Suppr超能文献

验证用于偶然发现的肺部亚实性结节风险分层的预测模型:韩国一家三级医疗中心的回顾性队列研究。

Validation of prediction models for risk stratification of incidentally detected pulmonary subsolid nodules: a retrospective cohort study in a Korean tertiary medical centre.

机构信息

Department of Radiology, Seoul National University College of Medicine, Seoul, Korea.

Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Korea.

出版信息

BMJ Open. 2018 May 24;8(5):e019996. doi: 10.1136/bmjopen-2017-019996.

Abstract

OBJECTIVES

To validate the performances of two prediction models (Brock and Lee models) for the differentiation of minimally invasive adenocarcinoma (MIA) and invasive pulmonary adenocarcinoma (IPA) from preinvasive lesions among subsolid nodules (SSNs).

DESIGN

A retrospective cohort study.

SETTING

A tertiary university hospital in South Korea.

PARTICIPANTS

410 patients with 410 incidentally detected SSNs who underwent surgical resection for the pulmonary adenocarcinoma spectrum between 2011 and 2015.

PRIMARY AND SECONDARY OUTCOME MEASURES

Using clinical and radiological variables, the predicted probability of MIA/IPA was calculated from pre-existing logistic models (Brock and Lee models). Areas under the receiver operating characteristic curve (AUCs) were calculated and compared between models. Performance metrics including sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) were also obtained.

RESULTS

For pure ground-glass nodules (n=101), the AUC of the Brock model in differentiating MIA/IPA (59/101) from preinvasive lesions (42/101) was 0.671. Sensitivity, specificity, accuracy, PPV and NPV based on the optimal cut-off value were 64.4%, 64.3%, 64.4%, 71.7% and 56.3%, respectively. Sensitivity, specificity, accuracy, PPV and NPV according to the Lee criteria were 76.3%, 42.9%, 62.4%, 65.2% and 56.3%, respectively. AUC was not obtained for the Lee model as a single cut-off of nodule size (≥10 mm) was suggested by this model for the assessment of pure ground-glass nodules. For part-solid nodules (n=309; 26 preinvasive lesions and 283 MIA/IPAs), the AUC was 0.746 for the Brock model and 0.771 for the Lee model (p=0.574). Sensitivity, specificity, accuracy, PPV and NPV were 82.3%, 53.8%, 79.9%, 95.1% and 21.9%, respectively, for the Brock model and 77.0%, 69.2%, 76.4%, 96.5% and 21.7%, respectively, for the Lee model.

CONCLUSIONS

The performance of prediction models for the incidentally detected SSNs in differentiating MIA/IPA from preinvasive lesions might be suboptimal. Thus, an alternative risk calculation model is required for the incidentally detected SSNs.

摘要

目的

验证两个预测模型(Brock 和 Lee 模型)在区分亚实性结节(SSN)中浸润前病变与微浸润性腺癌(MIA)和浸润性腺癌(IPA)的性能。

设计

回顾性队列研究。

地点

韩国一家三级大学医院。

参与者

2011 年至 2015 年间,410 名偶然发现的 SSN 患者接受了肺腺癌谱系的手术切除。

主要和次要结果

使用临床和影像学变量,从预先存在的逻辑模型(Brock 和 Lee 模型)中计算出 MIA/IPA 的预测概率。计算并比较了受试者工作特征曲线(ROC)下的面积(AUCs)。还获得了性能指标,包括敏感性、特异性、准确性、阳性预测值(PPV)和阴性预测值(NPV)。

结果

对于纯磨玻璃结节(n=101),Brock 模型区分 MIA/IPA(59/101)与浸润前病变(42/101)的 AUC 为 0.671。基于最佳截断值的敏感性、特异性、准确性、PPV 和 NPV 分别为 64.4%、64.3%、64.4%、71.7%和 56.3%。根据 Lee 标准,敏感性、特异性、准确性、PPV 和 NPV 分别为 76.3%、42.9%、62.4%、65.2%和 56.3%。由于该模型建议结节大小(≥10mm)作为单一截断值,因此无法获得 Lee 模型的 AUC。对于部分实性结节(n=309;26 个浸润前病变和 283 个 MIA/IPA),Brock 模型的 AUC 为 0.746,Lee 模型为 0.771(p=0.574)。Brock 模型的敏感性、特异性、准确性、PPV 和 NPV 分别为 82.3%、53.8%、79.9%、95.1%和 21.9%,Lee 模型分别为 77.0%、69.2%、76.4%、96.5%和 21.7%。

结论

用于区分偶然发现的 SSN 中 MIA/IPA 与浸润前病变的预测模型的性能可能不佳。因此,需要为偶然发现的 SSN 建立替代风险计算模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4589/5988095/9a9fca95619d/bmjopen-2017-019996f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验