IEEE Trans Neural Netw Learn Syst. 2022 Aug;33(8):3587-3597. doi: 10.1109/TNNLS.2021.3053576. Epub 2022 Aug 3.
Accurate electroencephalogram (EEG) pattern decoding for specific mental tasks is one of the key steps for the development of brain-computer interface (BCI), which is quite challenging due to the considerably low signal-to-noise ratio of EEG collected at the brain scalp. Machine learning provides a promising technique to optimize EEG patterns toward better decoding accuracy. However, existing algorithms do not effectively explore the underlying data structure capturing the true EEG sample distribution and, hence, can only yield a suboptimal decoding accuracy. To uncover the intrinsic distribution structure of EEG data, we propose a clustering-based multitask feature learning algorithm for improved EEG pattern decoding. Specifically, we perform affinity propagation-based clustering to explore the subclasses (i.e., clusters) in each of the original classes and then assign each subclass a unique label based on a one-versus-all encoding strategy. With the encoded label matrix, we devise a novel multitask learning algorithm by exploiting the subclass relationship to jointly optimize the EEG pattern features from the uncovered subclasses. We then train a linear support vector machine with the optimized features for EEG pattern decoding. Extensive experimental studies are conducted on three EEG data sets to validate the effectiveness of our algorithm in comparison with other state-of-the-art approaches. The improved experimental results demonstrate the outstanding superiority of our algorithm, suggesting its prominent performance for EEG pattern decoding in BCI applications.
准确地对特定心理任务的脑电 (EEG) 模式进行解码是脑机接口 (BCI) 发展的关键步骤之一,但由于大脑头皮上采集的 EEG 信号的信噪比相当低,因此这是一项极具挑战性的任务。机器学习为优化 EEG 模式以提高解码精度提供了一种很有前途的技术。然而,现有的算法并没有有效地探索潜在的数据结构,以捕捉真实的 EEG 样本分布,因此只能达到次优的解码精度。为了揭示 EEG 数据的内在分布结构,我们提出了一种基于聚类的多任务特征学习算法,以提高 EEG 模式解码的性能。具体来说,我们使用基于相似性传播的聚类方法来探索原始类别中的子类(即聚类),然后根据一对多编码策略为每个子类分配唯一的标签。利用编码后的标签矩阵,我们设计了一种新的多任务学习算法,通过利用子类关系共同优化未被发现的子类中的 EEG 模式特征。然后,我们使用优化后的特征训练线性支持向量机进行 EEG 模式解码。我们在三个 EEG 数据集上进行了广泛的实验研究,以验证我们的算法与其他最先进的方法相比的有效性。改进后的实验结果表明了我们算法的卓越优势,表明其在 BCI 应用中对 EEG 模式解码的出色性能。