Suppr超能文献

基于化学位移编码的磁共振成像中质子密度脂肪分数图的纹理特征可预测椎旁肌力量。

Texture Features of Proton Density Fat Fraction Maps from Chemical Shift Encoding-Based MRI Predict Paraspinal Muscle Strength.

作者信息

Dieckmeyer Michael, Inhuber Stephanie, Schlaeger Sarah, Weidlich Dominik, Mookiah Muthu Rama Krishnan, Subburaj Karupppasamy, Burian Egon, Sollmann Nico, Kirschke Jan S, Karampinos Dimitrios C, Baum Thomas

机构信息

Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar der Technischen Universitär München, Ismaningerstr. 22, 81675 Munich, Germany.

Department of Sport and Health Sciences, Technical University of Munich, Georg-Brauchle-Ring 60, 80992 Munich, Germany.

出版信息

Diagnostics (Basel). 2021 Feb 4;11(2):239. doi: 10.3390/diagnostics11020239.

Abstract

Texture analysis (TA) has shown promise as a surrogate marker for tissue structure, based on conventional and quantitative MRI sequences. Chemical-shift-encoding-based MRI (CSE-MRI)-derived proton density fat fraction (PDFF) of paraspinal muscles has been associated with various medical conditions including lumbar back pain (LBP) and neuromuscular diseases (NMD). Its application has been shown to improve the prediction of paraspinal muscle strength beyond muscle volume. Since mean PDFF values do not fully reflect muscle tissue structure, the purpose of our study was to investigate PDFF-based TA of paraspinal muscles as a predictor of muscle strength, as compared to mean PDFF. We performed 3T-MRI of the lumbar spine in 26 healthy subjects (age = 30 ± 6 years; 15 females) using a six-echo 3D spoiled gradient echo sequence for chemical-shift-encoding-based water-fat separation. Erector spinae (ES) and psoas (PS) muscles were segmented bilaterally from level L2-L5 to extract mean PDFF and texture features. Muscle flexion and extension strength was measured with an isokinetic dynamometer. Out of the eleven texture features extracted for each muscle, Kurtosis(global) of ES showed the highest significant correlation ( = 0.59, = 0.001) with extension strength and Variance(global) of PS showed the highest significant correlation ( = 0.63, = 0.001) with flexion strength. Using multivariate linear regression models, Kurtosis(global) of ES and BMI were identified as significant predictors of extension strength (R = 0.42; < 0.001), and Variance(global) and Skewness(global) of PS were identified as significant predictors of flexion strength (R = 0.59; = 0.001), while mean PDFF was not identified as a significant predictor. TA of CSE-MRI-based PDFF maps improves the prediction of paraspinal muscle strength beyond mean PDFF, potentially reflecting the ability to quantify the pattern of muscular fat infiltration. In the future, this may help to improve the pathophysiological understanding, diagnosis, monitoring and treatment evaluation of diseases with paraspinal muscle involvement, e.g., NMD and LBP.

摘要

基于传统和定量MRI序列,纹理分析(TA)已显示出有望成为组织结构的替代标志物。基于化学位移编码的MRI(CSE-MRI)得出的椎旁肌质子密度脂肪分数(PDFF)与包括腰背痛(LBP)和神经肌肉疾病(NMD)在内的各种医学状况相关。其应用已被证明能在肌肉体积之外改善对椎旁肌力量的预测。由于平均PDFF值不能完全反映肌肉组织结构,我们研究的目的是探讨基于PDFF的椎旁肌纹理分析作为肌肉力量预测指标的情况,并与平均PDFF进行比较。我们使用用于基于化学位移编码的水脂分离的六回波3D扰相梯度回波序列,对26名健康受试者(年龄=30±6岁;15名女性)进行了腰椎3T-MRI检查。双侧从L2-L5水平分割竖脊肌(ES)和腰大肌(PS),以提取平均PDFF和纹理特征。使用等速测力计测量肌肉屈伸力量。在为每块肌肉提取的11个纹理特征中,ES的峰度(全局)与伸展力量显示出最高的显著相关性(r = 0.59,p = 0.001),PS的方差(全局)与屈曲力量显示出最高的显著相关性(r = 0.63,p = 0.001)。使用多元线性回归模型,ES的峰度(全局)和BMI被确定为伸展力量的显著预测指标(R = 0.42;p < 0.001),PS的方差(全局)和偏度(全局)被确定为屈曲力量的显著预测指标(R = 0.59;p = 0.001),而平均PDFF未被确定为显著预测指标。基于CSE-MRI的PDFF图的纹理分析在平均PDFF之外改善了对椎旁肌力量的预测,可能反映了量化肌肉脂肪浸润模式的能力。未来,这可能有助于改善对伴有椎旁肌受累疾病(如NMD和LBP)的病理生理理解、诊断、监测和治疗评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9886/7913879/909bb380a751/diagnostics-11-00239-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验