文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

MRI 成像中的脊柱肌肉自动分割技术:系统评价。

Spine muscle auto segmentation techniques in MRI imaging: a systematic review.

机构信息

Department of Biomedical Research Institute, Inha University Hospital, 27 Inhang-ro, Jung-gu, Incheon, Republic of Korea.

Department of Orthopaedic Surgery, School of Medicine, Inha University Hospital, 27 Inhang-ro, Jung-gu, Incheon, Republic of Korea.

出版信息

BMC Musculoskelet Disord. 2024 Sep 6;25(1):716. doi: 10.1186/s12891-024-07777-4.


DOI:10.1186/s12891-024-07777-4
PMID:39243080
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11378543/
Abstract

BACKGROUND: The accurate segmentation of spine muscles plays a crucial role in analyzing musculoskeletal disorders and designing effective rehabilitation strategies. Various imaging techniques such as MRI have been utilized to acquire muscle images, but the segmentation process remains complex and challenging due to the inherent complexity and variability of muscle structures. In this systematic review, we investigate and evaluate methods for automatic segmentation of spinal muscles. METHODS: Data for this study were obtained from PubMed/MEDLINE databases, employing a search methodology that includes the terms 'Segmentation spine muscle' within the title, abstract, and keywords to ensure a comprehensive and systematic compilation of relevant studies. Systematic reviews were not included in the study. RESULTS: Out of 369 related studies, we focused on 12 specific studies. All studies focused on segmentation of spine muscle use MRI, in this systematic review subjects such as healthy volunteers, back pain patients, ASD patient were included. MRI imaging was performed on devices from several manufacturers, including Siemens, GE. The study included automatic segmentation using AI, segmentation using PDFF, and segmentation using ROI. CONCLUSION: Despite advancements in spine muscle segmentation techniques, challenges still exist. The accuracy and precision of segmentation algorithms need to be improved to accurately delineate the different muscle structures in the spine. Robustness to variations in image quality, artifacts, and patient-specific characteristics is crucial for reliable segmentation results. Additionally, the availability of annotated datasets for training and validation purposes is essential for the development and evaluation of new segmentation algorithms. Future research should focus on addressing these challenges and developing more robust and accurate spine muscle segmentation techniques to enhance clinical assessment and treatment planning for musculoskeletal disorders.

摘要

背景:准确分割脊柱肌肉在分析肌肉骨骼疾病和设计有效的康复策略方面起着至关重要的作用。各种成像技术,如 MRI,已被用于获取肌肉图像,但由于肌肉结构的固有复杂性和可变性,分割过程仍然复杂且具有挑战性。在这项系统评价中,我们调查和评估了自动分割脊柱肌肉的方法。

方法:本研究的数据来自 PubMed/MEDLINE 数据库,采用的搜索方法包括在标题、摘要和关键词中使用“Spine muscle segmentation”一词,以确保全面系统地收集相关研究。本研究不包括系统评价。

结果:在 369 项相关研究中,我们重点关注了 12 项具体研究。所有研究都集中在脊柱肌肉的分割上,都使用了 MRI,在这项系统评价中,研究对象包括健康志愿者、背痛患者、ASD 患者等。MRI 成像设备来自多个制造商,包括西门子、GE。研究包括使用 AI 进行自动分割、使用 PDFF 进行分割以及使用 ROI 进行分割。

结论:尽管脊柱肌肉分割技术取得了进展,但仍存在挑战。需要提高分割算法的准确性和精度,以准确描绘脊柱中的不同肌肉结构。稳健性对于图像质量、伪影和患者特异性特征的变化至关重要,以获得可靠的分割结果。此外,为了开发和评估新的分割算法,需要有用于训练和验证目的的带注释数据集。未来的研究应集中解决这些挑战,并开发更强大、更准确的脊柱肌肉分割技术,以增强肌肉骨骼疾病的临床评估和治疗计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23b1/11378543/f276db6c19dd/12891_2024_7777_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23b1/11378543/f9009ca047b3/12891_2024_7777_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23b1/11378543/f23058f57721/12891_2024_7777_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23b1/11378543/f276db6c19dd/12891_2024_7777_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23b1/11378543/f9009ca047b3/12891_2024_7777_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23b1/11378543/f23058f57721/12891_2024_7777_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23b1/11378543/f276db6c19dd/12891_2024_7777_Fig3_HTML.jpg

相似文献

[1]
Spine muscle auto segmentation techniques in MRI imaging: a systematic review.

BMC Musculoskelet Disord. 2024-9-6

[2]
A Deep-Learning-Based, Fully Automated Program to Segment and Quantify Major Spinal Components on Axial Lumbar Spine Magnetic Resonance Images.

Phys Ther. 2021-6-1

[3]
Lumbar muscle and vertebral bodies segmentation of chemical shift encoding-based water-fat MRI: the reference database MyoSegmenTUM spine.

BMC Musculoskelet Disord. 2019-4-9

[4]
Convolutional neural networks for the automatic segmentation of lumbar paraspinal muscles in people with low back pain.

Sci Rep. 2022-8-5

[5]
Analysis of the paraspinal muscle morphology of the lumbar spine using a convolutional neural network (CNN).

Eur Spine J. 2022-3

[6]
Evaluation of an automated thresholding algorithm for the quantification of paraspinal muscle composition from MRI images.

Biomed Eng Online. 2017-5-22

[7]
PILLAR: ParaspInaL muscLe segmentAtion pRoject - a comprehensive online resource to guide manual segmentation of paraspinal muscles from magnetic resonance imaging.

BMC Musculoskelet Disord. 2023-11-23

[8]
Magnetic Resonance Images Segmentation of Multifidus based on Dense-unet and Superpixel.

Curr Med Imaging. 2024

[9]
Deep Learning for Multi-Tissue Segmentation and Fully Automatic Personalized Biomechanical Models from BACPAC Clinical Lumbar Spine MRI.

Pain Med. 2023-8-4

[10]
Denoising diffusion-based MRI to CT image translation enables automated spinal segmentation.

Eur Radiol Exp. 2023-11-14

本文引用的文献

[1]
An Automated Deep Learning Approach for Spine Segmentation and Vertebrae Recognition Using Computed Tomography Images.

Diagnostics (Basel). 2023-8-12

[2]
Deep Learning for Multi-Tissue Segmentation and Fully Automatic Personalized Biomechanical Models from BACPAC Clinical Lumbar Spine MRI.

Pain Med. 2023-8-4

[3]
Convolutional neural networks for the automatic segmentation of lumbar paraspinal muscles in people with low back pain.

Sci Rep. 2022-8-5

[4]
An externally validated deep learning model for the accurate segmentation of the lumbar paravertebral muscles.

Eur Spine J. 2022-8

[5]
Automated Segmentation of Spinal Muscles From Upright Open MRI Using a Multiscale Pyramid 2D Convolutional Neural Network.

Spine (Phila Pa 1976). 2022-8-15

[6]
Analysis of the paraspinal muscle morphology of the lumbar spine using a convolutional neural network (CNN).

Eur Spine J. 2022-3

[7]
Paraspinal muscle pathophysiology associated with low back pain and spine degenerative disorders.

JOR Spine. 2021-9-15

[8]
Multi-muscle deep learning segmentation to automate the quantification of muscle fat infiltration in cervical spine conditions.

Sci Rep. 2021-8-16

[9]
Volume of spinopelvic muscles: comparison between adult spinal deformity patients and asymptomatic subjects.

Spine Deform. 2021-11

[10]
Texture Features of Proton Density Fat Fraction Maps from Chemical Shift Encoding-Based MRI Predict Paraspinal Muscle Strength.

Diagnostics (Basel). 2021-2-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索