Suppr超能文献

结合不同对接引擎和共识策略,设计和验证 SARS-CoV-2 3CL 蛋白酶的优化虚拟筛选方案。

Combining Different Docking Engines and Consensus Strategies to Design and Validate Optimized Virtual Screening Protocols for the SARS-CoV-2 3CL Protease.

机构信息

Dompé Farmaceutici SpA, Via Campo di Pile, 67100 L'Aquila, Italy.

Computational Biomedicine, Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5), Forschungszentrum Jülich, 52425 Jülich, Germany.

出版信息

Molecules. 2021 Feb 4;26(4):797. doi: 10.3390/molecules26040797.

Abstract

The 3CL-Protease appears to be a very promising medicinal target to develop anti-SARS-CoV-2 agents. The availability of resolved structures allows structure-based computational approaches to be carried out even though the lack of known inhibitors prevents a proper validation of the performed simulations. The innovative idea of the study is to exploit known inhibitors of SARS-CoV 3CL-Pro as a training set to perform and validate multiple virtual screening campaigns. Docking simulations using four different programs (Fred, Glide, LiGen, and PLANTS) were performed investigating the role of both multiple binding modes (by binding space) and multiple isomers/states (by developing the corresponding isomeric space). The computed docking scores were used to develop consensus models, which allow an in-depth comparison of the resulting performances. On average, the reached performances revealed the different sensitivity to isomeric differences and multiple binding modes between the four docking engines. In detail, Glide and LiGen are the tools that best benefit from isomeric and binding space, respectively, while Fred is the most insensitive program. The obtained results emphasize the fruitful role of combining various docking tools to optimize the predictive performances. Taken together, the performed simulations allowed the rational development of highly performing virtual screening workflows, which could be further optimized by considering different 3CL-Pro structures and, more importantly, by including true SARS-CoV-2 3CL-Pro inhibitors (as learning set) when available.

摘要

3CL-蛋白酶似乎是开发抗 SARS-CoV-2 药物的一个非常有前途的医学靶点。已有解析结构,因此即使缺乏已知抑制剂,也可以进行基于结构的计算方法,以防止对所进行的模拟进行适当验证。该研究的创新思路是利用 SARS-CoV 3CL-蛋白酶的已知抑制剂作为训练集,进行和验证多个虚拟筛选活动。使用四个不同的程序(Fred、Glide、LiGen 和 PLANTS)进行对接模拟,研究了多种结合模式(通过结合空间)和多种异构体/状态(通过开发相应的异构体空间)的作用。计算出的对接分数用于开发共识模型,从而可以深入比较结果性能。平均而言,所达到的性能揭示了四个对接引擎之间对异构体差异和多种结合模式的不同敏感性。具体而言,Glide 和 LiGen 分别是最能受益于异构体和结合空间的工具,而 Fred 是最不敏感的程序。所得结果强调了结合各种对接工具来优化预测性能的有益作用。综上所述,所进行的模拟允许合理开发高表现虚拟筛选工作流程,并且可以通过考虑不同的 3CL-蛋白酶结构进一步优化,更重要的是,在可用时包含真正的 SARS-CoV-2 3CL-蛋白酶抑制剂(作为学习集)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d739/7913849/23a0836138d5/molecules-26-00797-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验