Suppr超能文献

预测髋关节置换手术结果的患者因素:一种机器学习方法。

Patient Factors That Matter in Predicting Hip Arthroplasty Outcomes: A Machine-Learning Approach.

机构信息

Division of Orthopaedic Surgery, University of Toronto, Toronto, Ontario, Canada.

DeltaQuest Foundation, Inc, Concord, MA.

出版信息

J Arthroplasty. 2021 Jun;36(6):2024-2032. doi: 10.1016/j.arth.2020.12.038. Epub 2021 Jan 18.

Abstract

BACKGROUND

Despite the success of total hip arthroplasty (THA), approximately 10%-15% of patients will be dissatisfied with their outcome. Identifying patients at risk of not achieving meaningful gains postoperatively is critical to pre-surgical counseling and clinical decision support. Machine learning has shown promise in creating predictive models. This study used a machine-learning model to identify patient-specific variables that predict the postoperative functional outcome in THA.

METHODS

A prospective longitudinal cohort of 160 consecutive patients undergoing total hip replacement for the treatment of degenerative arthritis completed self-reported measures preoperatively and at 3 months postoperatively. Using four types of independent variables (patient demographics, patient-reported health, cognitive appraisal processes and surgical approach), a machine-learning model utilizing Least Absolute Shrinkage Selection Operator (LASSO) was constructed to predict postoperative Hip Disability and Osteoarthritis Outcome Score (HOOS) at 3 months.

RESULTS

The most predictive independent variables of postoperative HOOS were cognitive appraisal processes. Variables that predicted a worse HOOS consisted of frequent thoughts of work (β = -0.34), frequent comparison to healthier peers (β = -0.26), increased body mass index (β = -0.17), increased medical comorbidities (β = -0.19), and the anterior surgical approach (β = -0.15). Variables that predicted a better HOOS consisted of employment at the time of surgery (β = 0.17), and thoughts related to family interaction (β = 0.12), trying not to complain (β = 0.13), and helping others (β = 0.22).

CONCLUSIONS

This clinical prediction model in THA revealed that the factors most predictive of outcome were cognitive appraisal processes, demonstrating their importance to outcome-based research.

LEVEL OF EVIDENCE

Prognostic Level 1.

摘要

背景

尽管全髋关节置换术(THA)取得了成功,但仍有约 10%-15%的患者对其术后效果不满意。确定术后无法获得有意义收益的患者风险对于术前咨询和临床决策支持至关重要。机器学习在创建预测模型方面显示出了前景。本研究使用机器学习模型来确定可预测 THA 术后功能结果的患者特定变量。

方法

对 160 例连续接受全髋关节置换术治疗退行性关节炎的患者进行前瞻性纵向队列研究,患者在术前和术后 3 个月完成自我报告的测量。使用四种类型的独立变量(患者人口统计学、患者报告的健康状况、认知评估过程和手术方法),使用最小绝对收缩和选择算子(LASSO)的机器学习模型构建来预测术后 3 个月的髋关节残疾和骨关节炎结果评分(HOOS)。

结果

术后 HOOS 的最具预测性的独立变量是认知评估过程。预测 HOOS 更差的变量包括经常考虑工作(β=-0.34)、经常与更健康的同龄人比较(β=-0.26)、体重指数增加(β=-0.17)、医疗合并症增加(β=-0.19)和前侧手术方法(β=-0.15)。预测 HOOS 更好的变量包括手术时就业(β=0.17)、与家庭互动相关的想法(β=0.12)、尽量不抱怨(β=0.13)和帮助他人(β=0.22)。

结论

THA 的这种临床预测模型表明,对结果最具预测性的因素是认知评估过程,这表明它们对基于结果的研究很重要。

证据水平

预测水平 1。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验