Department of Anesthesiology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
Zhejiang University School of Medicine, Hangzhou, China.
BMC Med Res Methodol. 2024 Oct 7;24(1):232. doi: 10.1186/s12874-024-02357-5.
Postoperative pain is a prevalent symptom experienced by patients undergoing surgical procedures. This study aims to develop deep learning algorithms for predicting acute postoperative pain using both essential patient details and real-time vital sign data during surgery.
Through a retrospective observational approach, we utilized Graph Attention Networks (GAT) and graph Transformer Networks (GTN) deep learning algorithms to construct the DoseFormer model while incorporating an attention mechanism. This model employed patient information and intraoperative vital signs obtained during Video-assisted thoracoscopic surgery (VATS) surgery to anticipate postoperative pain. By categorizing the static and dynamic data, the DoseFormer model performed binary classification to predict the likelihood of postoperative acute pain.
A total of 1758 patients were initially included, with 1552 patients after data cleaning. These patients were then divided into training set (n = 931) and testing set (n = 621). In the testing set, the DoseFormer model exhibited significantly higher AUROC (0.98) compared to classical machine learning algorithms. Furthermore, the DoseFormer model displayed a significantly higher F1 value (0.85) in comparison to other classical machine learning algorithms. Notably, the attending anesthesiologists' F1 values (attending: 0.49, fellow: 0.43, Resident: 0.16) were significantly lower than those of the DoseFormer model in predicting acute postoperative pain.
Deep learning model can predict postoperative acute pain events based on patients' basic information and intraoperative vital signs.
术后疼痛是接受手术的患者普遍存在的症状。本研究旨在开发深度学习算法,利用手术过程中患者的基本信息和实时生命体征数据来预测急性术后疼痛。
通过回顾性观察方法,我们使用图注意网络(GAT)和图变换网络(GTN)深度学习算法构建 DoseFormer 模型,同时结合注意力机制。该模型使用患者信息和视频辅助胸腔镜手术(VATS)手术中获得的术中生命体征来预测术后疼痛。通过对静态和动态数据进行分类,DoseFormer 模型进行二分类以预测术后急性疼痛的可能性。
共纳入 1758 例患者,数据清理后 1552 例患者。然后将这些患者分为训练集(n=931)和测试集(n=621)。在测试集中,DoseFormer 模型的 AUROC(0.98)显著高于经典机器学习算法。此外,与其他经典机器学习算法相比,DoseFormer 模型的 F1 值(0.85)也显著更高。值得注意的是,在预测急性术后疼痛方面,主治麻醉师的 F1 值(主治医生:0.49,研究员:0.43,住院医师:0.16)明显低于 DoseFormer 模型。
深度学习模型可以根据患者的基本信息和术中生命体征预测术后急性疼痛事件。