Li Hongyuan, Li Shaowei, Naik Mit H, Xie Jingxu, Li Xinyu, Wang Jiayin, Regan Emma, Wang Danqing, Zhao Wenyu, Zhao Sihan, Kahn Salman, Yumigeta Kentaro, Blei Mark, Taniguchi Takashi, Watanabe Kenji, Tongay Sefaattin, Zettl Alex, Louie Steven G, Wang Feng, Crommie Michael F
Department of Physics, University of California at Berkeley, Berkeley, CA, USA.
Graduate Group in Applied Science and Technology, University of California at Berkeley, Berkeley, CA, USA.
Nat Mater. 2021 Jul;20(7):945-950. doi: 10.1038/s41563-021-00923-6. Epub 2021 Feb 8.
Moiré superlattices in transition metal dichalcogenide (TMD) heterostructures can host novel correlated quantum phenomena due to the interplay of narrow moiré flat bands and strong, long-range Coulomb interactions. However, microscopic knowledge of the atomically reconstructed moiré superlattice and resulting flat bands is still lacking, which is critical for fundamental understanding and control of the correlated moiré phenomena. Here we quantitatively study the moiré flat bands in three-dimensional (3D) reconstructed WSe/WS moiré superlattices by comparing scanning tunnelling spectroscopy (STS) of high-quality exfoliated TMD heterostructure devices with ab initio simulations of TMD moiré superlattices. A strong 3D buckling reconstruction accompanied by large in-plane strain redistribution is identified in our WSe/WS moiré heterostructures. STS imaging demonstrates that this results in a remarkably narrow and highly localized K-point moiré flat band at the valence band edge of the heterostructure. A series of moiré flat bands are observed at different energies that exhibit varying degrees of localization. Our observations contradict previous simplified theoretical models but agree quantitatively with ab initio simulations that fully capture the 3D structural reconstruction. Our results reveal that the strain redistribution and 3D buckling in TMD heterostructures dominate the effective moiré potential and the corresponding moiré flat bands at the Brillouin zone K points.
过渡金属二硫属化物(TMD)异质结构中的莫尔超晶格由于窄莫尔平带与强的长程库仑相互作用之间的相互作用,能够呈现出新颖的关联量子现象。然而,对于原子级重构的莫尔超晶格及其产生的平带,仍缺乏微观层面的认识,而这对于从根本上理解和控制关联莫尔现象至关重要。在此,我们通过将高质量剥离的TMD异质结构器件的扫描隧道谱(STS)与TMD莫尔超晶格的从头算模拟进行比较,对三维(3D)重构的WSe/WS莫尔超晶格中的莫尔平带进行了定量研究。我们在WSe/WS莫尔异质结构中识别出了一种强烈的3D屈曲重构,并伴随着较大的面内应变重新分布。STS成像表明,这导致了异质结构价带边缘处出现一个极其狭窄且高度局域化的K点莫尔平带。在不同能量处观察到了一系列莫尔平带,它们呈现出不同程度的局域化。我们的观察结果与先前的简化理论模型相悖,但与能够完全捕捉3D结构重构的从头算模拟在定量上相符。我们的结果表明,TMD异质结构中的应变重新分布和3D屈曲主导了布里渊区K点处的有效莫尔势及相应的莫尔平带。