Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
Nat Struct Mol Biol. 2021 Mar;28(3):240-248. doi: 10.1038/s41594-020-00551-9. Epub 2021 Feb 8.
Sphingolipids are essential lipids in eukaryotic membranes. In humans, the first and rate-limiting step of sphingolipid synthesis is catalyzed by the serine palmitoyltransferase holocomplex, which consists of catalytic components (SPTLC1 and SPTLC2) and regulatory components (ssSPTa and ORMDL3). However, the assembly, substrate processing and regulation of the complex are unclear. Here, we present 8 cryo-electron microscopy structures of the human serine palmitoyltransferase holocomplex in various functional states at resolutions of 2.6-3.4 Å. The structures reveal not only how catalytic components recognize the substrate, but also how regulatory components modulate the substrate-binding tunnel to control enzyme activity: ssSPTa engages SPTLC2 and shapes the tunnel to determine substrate specificity. ORMDL3 blocks the tunnel and competes with substrate binding through its amino terminus. These findings provide mechanistic insights into sphingolipid biogenesis governed by the serine palmitoyltransferase complex.
鞘脂是真核细胞膜的必需脂质。在人类中,鞘脂合成的第一步和限速步骤由丝氨酸棕榈酰转移酶全酶复合物催化,该复合物由催化成分(SPTLC1 和 SPTLC2)和调节成分(ssSPTa 和 ORMDL3)组成。然而,该复合物的组装、底物加工和调节仍不清楚。在这里,我们展示了人源丝氨酸棕榈酰转移酶全酶复合物在不同功能状态下的 8 个冷冻电镜结构,分辨率为 2.6-3.4Å。这些结构不仅揭示了催化成分如何识别底物,还揭示了调节成分如何调节底物结合隧道来控制酶活性:ssSPTa 与 SPTLC2 结合并塑造隧道以确定底物特异性。ORMDL3 通过其氨基末端阻断隧道并与底物竞争结合。这些发现为丝氨酸棕榈酰转移酶复合物调控的鞘脂生物发生提供了机制见解。