Fang Pan, Yu Xiangming, Ding MengYang, Qifei Cong, Jiang Hongyu, Shi Qi, Zhao Weiwei, Zheng Weimin, Li Yingning, Ling Zixiang, Kong Wei-Jun, Yang Pengyuan, Shen Huali
MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Institute of Molecular Enzymology, School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
Minhang Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
Nat Commun. 2025 Jul 1;16(1):5568. doi: 10.1038/s41467-025-60437-6.
The current depth of site-specific N-glycoproteomics is insufficient to fully characterize glycosylation events in biological samples. Herein, we achieve an ultradeep and precision analysis of the N-glycoproteome of mouse tissues by integrating multiple workflows. The largest N-glycoproteomic dataset to date is established on mice, which contains 91,972 precursor glycopeptides, 62,216 glycoforms, 8939 glycosites and 4563 glycoproteins. The database consists of 6.8 million glyco-spectra (containing oxonium ions), among which 160,928 spectra is high-quality with confident N-glycopeptide identifications. The large-scale and high-quality dataset enhances the performance of current artificial intelligence models for glycopeptide tandem spectrum prediction. Using this ultradeep dataset, we observe tissue specific microheterogeneity and functional implications of protein glycosylation in mice. Furthermore, the region-resolved brain N-glycoproteomes for Alzheimer's Diseases, Parkinson Disease and aging mice reveal the spatiotemporal signatures and distinct pathological functions of the N-glycoproteins. A comprehensive database resource of experimental N-glycoproteomic data from this study and previous literatures is further established. This N-glycoproteome atlas serves as a promising tool for revealing the role of protein glycosylation in biological systems.
目前位点特异性N-糖蛋白质组学的深度不足以完全表征生物样品中的糖基化事件。在此,我们通过整合多种工作流程,实现了对小鼠组织N-糖蛋白质组的超深度和精确分析。在小鼠上建立了迄今为止最大的N-糖蛋白质组数据集,其中包含91,972个前体糖肽、62,216种糖型、8939个糖基化位点和4563种糖蛋白。该数据库由680万个糖谱(包含氧鎓离子)组成,其中160,928个谱图是高质量的,具有可靠的N-糖肽鉴定结果。这个大规模高质量数据集提高了当前用于糖肽串联质谱预测的人工智能模型的性能。利用这个超深度数据集,我们观察到小鼠蛋白质糖基化的组织特异性微异质性及其功能意义。此外,针对阿尔茨海默病、帕金森病和衰老小鼠的区域解析脑N-糖蛋白质组揭示了N-糖蛋白的时空特征和独特的病理功能。我们还进一步建立了一个综合数据库资源,整合了本研究和以往文献中的实验性N-糖蛋白质组数据。这个N-糖蛋白质组图谱是揭示蛋白质糖基化在生物系统中作用的一个有前景的工具。
Nat Struct Mol Biol. 2025-2-10
J Prev Alzheimers Dis. 2025-5
Cochrane Database Syst Rev. 2001
Cochrane Database Syst Rev. 2022-5-20
Cochrane Database Syst Rev. 2021-2-3
Cochrane Database Syst Rev. 2021-4-19
Acta Biochim Biophys Sin (Shanghai). 2024-8-15
Nat Commun. 2024-3-19
Signal Transduct Target Ther. 2023-10-18
Nat Biomed Eng. 2024-3