Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, UdelaR, 12900 Montevideo, Uruguay.
Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11600 Montevideo, Uruguay.
Genes (Basel). 2021 Feb 7;12(2):236. doi: 10.3390/genes12020236.
Mutations in the Arabidopsis () gene cause reduced tolerance to osmotic stress evidenced by an arrest in root growth and root swelling, which makes it an interesting model to explore how root growth is controlled under stress conditions. We found that osmotic stress reduced the growth rate of the primary root by inhibiting the cell elongation in the elongation zone followed by a reduction in the number of cortical cells in the proximal meristem. We then studied the stiffness of epidermal cell walls in the root elongation zone of mutants under osmotic stress using atomic force microscopy. In plants grown in control conditions, the mean apparent elastic modulus was 448% higher for live Col-0 cell walls than for (88.1 ± 2.8 vs. 16.08 ± 6.9 kPa). Seven days of osmotic stress caused an increase in the stiffness in the cell wall of the cells from the elongation zone of 87% and 84% for Col-0 and , respectively. These findings suggest that may play a role controlling cell expansion orientation during root growth, necessary for osmotic stress adaptation.
拟南芥()基因突变导致对渗透胁迫的耐受性降低,表现在根生长和根肿胀的停滞,这使其成为探索胁迫条件下根生长如何受到控制的有趣模型。我们发现,渗透胁迫通过抑制伸长区中的细胞伸长来降低主根的生长速率,随后减少近轴分生组织中的皮层细胞数量。然后,我们使用原子力显微镜研究了渗透胁迫下突变体根伸长区表皮细胞壁的硬度。在对照条件下生长的植物中,活 Col-0 细胞壁的平均表观弹性模量比(88.1 ± 2.8 比 16.08 ± 6.9 kPa)高 448%。7 天的渗透胁迫导致伸长区细胞细胞壁的硬度分别增加 Col-0 和 87%和 84%。这些发现表明,可能在控制根生长过程中的细胞扩展方向中发挥作用,这对于适应渗透胁迫是必要的。