Suppr超能文献

拟南芥基因参与渗透胁迫适应过程中的根生长各向异性。

The Arabidopsis Gene Is Involved in Anisotropic Root Growth during Osmotic Stress Adaptation.

机构信息

Laboratorio de Bioquímica, Departamento de Biología Vegetal, Facultad de Agronomía, UdelaR, 12900 Montevideo, Uruguay.

Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11600 Montevideo, Uruguay.

出版信息

Genes (Basel). 2021 Feb 7;12(2):236. doi: 10.3390/genes12020236.

Abstract

Mutations in the Arabidopsis () gene cause reduced tolerance to osmotic stress evidenced by an arrest in root growth and root swelling, which makes it an interesting model to explore how root growth is controlled under stress conditions. We found that osmotic stress reduced the growth rate of the primary root by inhibiting the cell elongation in the elongation zone followed by a reduction in the number of cortical cells in the proximal meristem. We then studied the stiffness of epidermal cell walls in the root elongation zone of mutants under osmotic stress using atomic force microscopy. In plants grown in control conditions, the mean apparent elastic modulus was 448% higher for live Col-0 cell walls than for (88.1 ± 2.8 vs. 16.08 ± 6.9 kPa). Seven days of osmotic stress caused an increase in the stiffness in the cell wall of the cells from the elongation zone of 87% and 84% for Col-0 and , respectively. These findings suggest that may play a role controlling cell expansion orientation during root growth, necessary for osmotic stress adaptation.

摘要

拟南芥()基因突变导致对渗透胁迫的耐受性降低,表现在根生长和根肿胀的停滞,这使其成为探索胁迫条件下根生长如何受到控制的有趣模型。我们发现,渗透胁迫通过抑制伸长区中的细胞伸长来降低主根的生长速率,随后减少近轴分生组织中的皮层细胞数量。然后,我们使用原子力显微镜研究了渗透胁迫下突变体根伸长区表皮细胞壁的硬度。在对照条件下生长的植物中,活 Col-0 细胞壁的平均表观弹性模量比(88.1 ± 2.8 比 16.08 ± 6.9 kPa)高 448%。7 天的渗透胁迫导致伸长区细胞细胞壁的硬度分别增加 Col-0 和 87%和 84%。这些发现表明,可能在控制根生长过程中的细胞扩展方向中发挥作用,这对于适应渗透胁迫是必要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/917f/7915054/1aa4f2df4542/genes-12-00236-g001.jpg

相似文献

1
The Arabidopsis Gene Is Involved in Anisotropic Root Growth during Osmotic Stress Adaptation.
Genes (Basel). 2021 Feb 7;12(2):236. doi: 10.3390/genes12020236.
2
The Arabidopsis tetratricopeptide thioredoxin-like gene family is required for osmotic stress tolerance and male sporogenesis.
Plant Physiol. 2012 Mar;158(3):1252-66. doi: 10.1104/pp.111.188920. Epub 2012 Jan 9.
3
Natural Root Cellular Variation in Responses to Osmotic Stress in Accessions.
Genes (Basel). 2019 Nov 29;10(12):983. doi: 10.3390/genes10120983.
6
COBL9 and COBL7 synergistically regulate root hair tip growth via controlling apical cellulose deposition.
Biochem Biophys Res Commun. 2022 Mar 12;596:6-13. doi: 10.1016/j.bbrc.2022.01.096. Epub 2022 Jan 28.
7
Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation.
Plant Physiol. 2015 Aug;168(4):1777-91. doi: 10.1104/pp.15.00523. Epub 2015 Jun 24.
8
A plant microRNA regulates the adaptation of roots to drought stress.
FEBS Lett. 2012 Jun 12;586(12):1742-7. doi: 10.1016/j.febslet.2012.05.013. Epub 2012 May 18.

引用本文的文献

3
Nitrate Starvation Induces Lateral Root Organogenesis in via Auxin Signaling.
Int J Mol Sci. 2024 Sep 3;25(17):9566. doi: 10.3390/ijms25179566.
4
Transcriptomic analysis of Chinese yam ( Turcz.) variants indicates brassinosteroid involvement in tuber development.
Front Nutr. 2023 May 5;10:1112793. doi: 10.3389/fnut.2023.1112793. eCollection 2023.
6
Genome-Wide Comprehensive Analysis of the Gene Family in .
Int J Mol Sci. 2021 Nov 15;22(22):12336. doi: 10.3390/ijms222212336.
7
Developmental Signals in the 21st Century; New Tools and Advances in Plant Signaling.
Genes (Basel). 2021 Oct 27;12(11):1708. doi: 10.3390/genes12111708.

本文引用的文献

1
Plant roots sense soil compaction through restricted ethylene diffusion.
Science. 2021 Jan 15;371(6526):276-280. doi: 10.1126/science.abf3013.
2
Root architecture and hydraulics converge for acclimation to changing water availability.
Nat Plants. 2020 Jul;6(7):744-749. doi: 10.1038/s41477-020-0684-5. Epub 2020 Jun 29.
3
Coping With Water Limitation: Hormones That Modify Plant Root Xylem Development.
Front Plant Sci. 2020 May 15;11:570. doi: 10.3389/fpls.2020.00570. eCollection 2020.
4
The physiology of plant responses to drought.
Science. 2020 Apr 17;368(6488):266-269. doi: 10.1126/science.aaz7614.
5
Evo-physio: on stress responses and the earliest land plants.
J Exp Bot. 2020 Jun 11;71(11):3254-3269. doi: 10.1093/jxb/eraa007.
6
Natural Root Cellular Variation in Responses to Osmotic Stress in Accessions.
Genes (Basel). 2019 Nov 29;10(12):983. doi: 10.3390/genes10120983.
7
Brassinosteroids: Multidimensional Regulators of Plant Growth, Development, and Stress Responses.
Plant Cell. 2020 Feb;32(2):295-318. doi: 10.1105/tpc.19.00335. Epub 2019 Nov 27.
8
A wall with integrity: surveillance and maintenance of the plant cell wall under stress.
New Phytol. 2020 Feb;225(4):1428-1439. doi: 10.1111/nph.16166. Epub 2019 Sep 27.
9
Root System Depth in Arabidopsis Is Shaped by EXOCYST70A3 via the Dynamic Modulation of Auxin Transport.
Cell. 2019 Jul 11;178(2):400-412.e16. doi: 10.1016/j.cell.2019.06.021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验