Manufacturing Demonstration Facility, Energy and Transportation Science Division, Oak Ridge National Laboratory, 2350 Cherahala Boulevard, Knoxville, TN, 37932, USA.
Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA.
Adv Mater. 2021 Mar;33(12):e2005538. doi: 10.1002/adma.202005538. Epub 2021 Feb 9.
Advanced templating techniques have enabled delicate control of both nano- and microscale structures and have helped thrust functional materials into the forefront of society. Cellulose nanomaterials are derived from natural polymers and show promise as a templating source for advanced materials. Use of cellulose nanomaterials in templating combines nanoscale property control with sustainability, an attribute often lacking in other templating techniques. Use of cellulose nanofibers for templating has shown great promise in recent years, but previous reviews on cellulose nanomaterial templating techniques have not provided extensive analysis of cellulose nanofiber templating. Cellulose nanofibers display several unique properties, including mechanical strength, porosity, high water retention, high surface functionality, and an entangled fibrous network, all of which can dictate distinctive aspects in the final templated materials. Many applications exploit the unique aspects of templating with cellulose nanofibers that help control the final properties of the material, including, but not limited to, applications in catalysis, batteries, supercapacitors, electrodes, building materials, biomaterials, and membranes. A detailed analysis on the use of cellulose nanofibers templating is provided, addressing specifically how careful selection of templating mechanisms and methodologies, combined toward goal applications, can be used to directly benefit chosen applications in advanced functional materials.
先进的模板技术使人们能够对纳米和微尺度结构进行精细控制,并将功能材料推向社会的前沿。纤维素纳米材料源自天然聚合物,有望成为先进材料的模板来源。在模板制作中使用纤维素纳米材料将纳米级的性能控制与可持续性结合在一起,而这一属性往往在其他模板技术中缺失。近年来,纤维素纳米纤维在模板制作中的应用前景广阔,但之前关于纤维素纳米材料模板技术的综述并没有对纤维素纳米纤维模板制作进行广泛分析。纤维素纳米纤维具有包括机械强度、多孔性、高保水性、高表面功能和缠结纤维网络在内的多种独特性质,所有这些性质都可以决定最终模板材料的独特方面。许多应用都利用了纤维素纳米纤维模板制作的独特方面,有助于控制材料的最终性能,包括但不限于催化、电池、超级电容器、电极、建筑材料、生物材料和膜等应用领域。本文提供了对纤维素纳米纤维模板制作的详细分析,具体探讨了如何通过精心选择模板机制和方法,并结合目标应用,直接有益于先进功能材料中的选定应用。