Alvi Naveed Ul Hassan, Mulla Mohammad Yusuf, Abitbol Tiffany, Fall Andreas, Beni Valerio
Smart Hardware, RISE Research Institutes of Sweden, Bio- and Organic Electronics, Södra Grytsgatan 4, Plan2, 602-33 Norrköping, Sweden.
Digital Cellulose Center, 602-33 Norrköping, Sweden.
Nanomaterials (Basel). 2023 Sep 21;13(18):2611. doi: 10.3390/nano13182611.
Cellulose is the most abundant organic material on our planet which has a key role in our daily life (e.g., paper, packaging). In recent years, the need for replacing fossil-based materials has expanded the application of cellulose and cellulose derivatives including into electronics and sensing. The combination of nanostructures with cellulose nanofibers (CNFs) is expected to create new opportunities for the development of innovative electronic devices. In this paper, we report on a single-step process for the low temperature (<100 °C), environmentally friendly, and fully scalable CNF-templated highly dense growth of zinc oxide (ZnO) nanorods (NRs). More specifically, the effect of the degree of substitution of the CNF (enzymatic CNFs and carboxymethylated CNFs with two different substitution levels) on the ZnO growth and the application of the developed ZnO NRs/CNF nanocomposites in the development of UV sensors is reported herein. The results of this investigation show that the growth and nature of ZnO NRs are strongly dependent on the charge of the CNFs; high charge promotes nanorod growth whereas with low charge, ZnO isotropic microstructures are created that are not attached to the CNFs. Devices manufactured via screen printing/drop-casting of the ZnO NRs/CNF nanocomposites demonstrate a good photo-sensing response with a very stable UV-induced photocurrent of 25.84 µA. This also exhibits excellent long-term stability with fast ON/OFF switching performance under the irradiance of a UV lamp (15 W).
纤维素是地球上最丰富的有机物质,在我们的日常生活中起着关键作用(例如纸张、包装)。近年来,对替代化石基材料的需求扩大了纤维素及其衍生物在电子和传感等领域的应用。纳米结构与纤维素纳米纤维(CNF)的结合有望为创新电子设备的开发创造新机遇。在本文中,我们报道了一种低温(<100°C)、环境友好且完全可扩展的一步法,以CNF为模板实现氧化锌(ZnO)纳米棒(NRs)的高密度生长。更具体地说,本文报道了CNF(酶解CNF和两种不同取代水平的羧甲基化CNF)的取代度对ZnO生长的影响,以及所制备的ZnO NRs/CNF纳米复合材料在紫外传感器开发中的应用。本研究结果表明,ZnO NRs的生长和性质强烈依赖于CNF的电荷;高电荷促进纳米棒生长,而低电荷则会产生不附着在CNF上的ZnO各向同性微结构。通过丝网印刷/滴铸ZnO NRs/CNF纳米复合材料制造的器件表现出良好的光传感响应,紫外诱导光电流非常稳定,为25.84 μA。在紫外灯(15 W)照射下,该器件还具有出色的长期稳定性和快速的开/关切换性能。