Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
Biochem J. 2021 Feb 26;478(4):943-959. doi: 10.1042/BCJ20200824.
Members of the glycoside hydrolase family 4 (GH4) employ an unusual glycosidic bond cleavage mechanism utilizing NAD(H) and a divalent metal ion, under reducing conditions. These enzymes act upon a diverse range of glycosides, and unlike most other GH families, homologs here are known to accommodate both α- and β-anomeric specificities within the same active site. Here, we report the catalytic properties and the crystal structures of TmAgu4B, an α-d-glucuronidase from the hyperthermophile Thermotoga maritima. The structures in three different states include the apo form, the NADH bound holo form, and the ternary complex with NADH and the reaction product d-glucuronic acid, at 2.15, 1.97 and 1.85 Å resolutions, respectively. These structures reveal the step-wise route of conformational changes required in the active site to achieve the catalytically competent state, and illustrate the direct role of residues that determine the reaction mechanism. Furthermore, a structural transition of a helical region in the active site to a turn geometry resulting in the rearrangement of a unique arginine residue governs the exclusive glucopyranosiduronic acid recognition in TmAgu4B. Mutational studies show that modifications of the glycone binding site geometry lead to catalytic failure and indicate overlapping roles of specific residues in catalysis and substrate recognition. The data highlight hitherto unreported molecular features and associated active site dynamics that determine the structure-function relationships within the unique GH4 family.
糖苷水解酶家族 4(GH4)的成员采用一种不寻常的糖苷键断裂机制,利用 NAD(H)和二价金属离子,在还原条件下。这些酶作用于各种糖苷,与大多数其他 GH 家族不同,这里的同源物被认为在同一个活性位点中同时容纳 α-和 β-端基特异性。在这里,我们报告了来自嗜热古菌 Thermotoga maritima 的 α-d-葡糖醛酸糖苷酶 TmAgu4B 的催化特性和晶体结构。三种不同状态的结构包括无配位的apo 形式、与 NADH 配位的全配位的holo 形式和与 NADH 和反应产物 d-葡萄糖醛酸的三元复合物,分辨率分别为 2.15、1.97 和 1.85 Å。这些结构揭示了活性位点中所需的构象变化的逐步途径,以达到催化活性状态,并说明了决定反应机制的残基的直接作用。此外,活性位点中螺旋区的结构转变为转角几何形状,导致独特的精氨酸残基的重排,这是 TmAgu4B 中独特的吡喃葡萄糖醛酸识别的基础。突变研究表明,糖结合位点几何形状的修饰导致催化失败,并表明特定残基在催化和底物识别中的重叠作用。这些数据突出了迄今为止未报道的分子特征和相关的活性位点动力学,这些特征决定了独特的 GH4 家族内的结构-功能关系。