Ebrahim Ali, Riley Blake T, Kumaran Desigan, Andi Babak, Fuchs Martin R, McSweeney Sean, Keedy Daniel A
Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, England.
Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031.
bioRxiv. 2021 Nov 7:2021.05.03.437411. doi: 10.1101/2021.05.03.437411.
The COVID-19 pandemic, instigated by the SARS-CoV-2 coronavirus, continues to plague the globe. The SARS-CoV-2 main protease, or M, is a promising target for development of novel antiviral therapeutics. Previous X-ray crystal structures of M were obtained at cryogenic temperature or room temperature only. Here we report a series of high-resolution crystal structures of unliganded M across multiple temperatures from cryogenic to physiological, and another at high humidity. We interrogate these datasets with parsimonious multiconformer models, multi-copy ensemble models, and isomorphous difference density maps. Our analysis reveals a temperature-dependent conformational landscape for M, including mobile solvent interleaved between the catalytic dyad, mercurial conformational heterogeneity in a key substrate-binding loop, and a far-reaching intramolecular network bridging the active site and dimer interface. Our results may inspire new strategies for antiviral drug development to counter-punch COVID-19 and combat future coronavirus pandemics.
由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引发的2019冠状病毒病(COVID-19)大流行仍在全球肆虐。SARS-CoV-2主要蛋白酶(M)是开发新型抗病毒疗法的一个有前景的靶点。之前M的X射线晶体结构仅在低温或室温下获得。在此,我们报告了一系列未结合配体的M在从低温到生理温度的多个温度下以及在高湿度条件下的高分辨率晶体结构。我们用简约多构象模型、多拷贝系综模型和同晶型差异密度图对这些数据集进行分析。我们的分析揭示了M的温度依赖性构象态势,包括催化二元组之间交错的流动溶剂、关键底物结合环中的汞诱导构象异质性,以及连接活性位点和二聚体界面的广泛分子内网络。我们的结果可能会激发对抗COVID-19和应对未来冠状病毒大流行的抗病毒药物开发新策略。