Suppr超能文献

血清 N-糖指纹图谱有助于鉴别肝内胆管细胞癌和肝细胞癌。

Serum N-glycan fingerprint helps to discriminate intrahepatic cholangiocarcinoma from hepatocellular carcinoma.

机构信息

Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, 200438, P. R. China.

Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, P. R. China.

出版信息

Electrophoresis. 2021 Jun;42(11):1187-1195. doi: 10.1002/elps.202000392. Epub 2021 Mar 1.

Abstract

Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are two main types of primary liver cancer, and reliable discrimination is important for optimal treatment. Aberrant glycosylation was detected in HCC and ICC. Both cross-sectional and follow-up studies were performed to establish a differential diagnosis model using N-glycans. A total of 420 participants were enrolled, with 310 patients in training cohort and 110 patients in validation cohort. The follow-up cohort was used to assess the prognosis of ICC. As the results, the diagnostic efficacy of the model was superior to alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA 19-9) when identifying ICC from HCC (AUC of the nomogram: 0.845, 95%CI: 0.788-0.902; AFP: 0.793, 95%CI: 0.732-0.854; CEA: 0.592, 95%CI: 0.496-0.687; CA 19-9: 0.674, 95%CI: 0.582-0.767) in training cohort. In validation cohort, this model (AUC: 0.810, 95% CI: 0.728-0.891) also demonstrated high efficacy in distinguishing ICC from HCC. Furthermore, the nomogram helps to stratify ICC into two subgroups with high or low risk of survival and recurrence. Therefore, a nomogram integrating six N-glycans [NGA2FB(Peak2), NG1A2F (Peak3), NA2 (Peak5), NA2F (Peak6), NA3 (Peak8) and NA4 (Peak11)] was established for ICC and HCC differentiation, and for prognosis assessment in ICC patients.

摘要

肝细胞癌 (HCC) 和肝内胆管细胞癌 (ICC) 是原发性肝癌的两种主要类型,可靠的鉴别对于最佳治疗至关重要。在 HCC 和 ICC 中检测到异常糖基化。进行了横断面和随访研究,以使用 N-聚糖建立鉴别诊断模型。共纳入 420 名参与者,其中训练队列 310 例,验证队列 110 例。随访队列用于评估 ICC 的预后。结果,该模型在识别 HCC 中的 ICC 时,其诊断效能优于甲胎蛋白 (AFP)、癌胚抗原 (CEA) 和糖类抗原 19-9 (CA 19-9)(列线图 AUC:0.845,95%CI:0.788-0.902;AFP:0.793,95%CI:0.732-0.854;CEA:0.592,95%CI:0.496-0.687;CA 19-9:0.674,95%CI:0.582-0.767),在训练队列中。在验证队列中,该模型(AUC:0.810,95%CI:0.728-0.891)在区分 ICC 和 HCC 方面也具有很高的疗效。此外,该列线图有助于将 ICC 分为生存和复发风险高或低的两个亚组。因此,建立了一个包含六个 N-聚糖 [NGA2FB(Peak2)、NG1A2F (Peak3)、NA2 (Peak5)、NA2F (Peak6)、NA3 (Peak8) 和 NA4 (Peak11)] 的列线图,用于 ICC 和 HCC 的鉴别诊断,以及 ICC 患者的预后评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验