Suppr超能文献

StanDep:捕获转录组变异性可提高特定于上下文的代谢模型。

StanDep: Capturing transcriptomic variability improves context-specific metabolic models.

机构信息

Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, United States of America.

Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, La Jolla, CA, United States of America.

出版信息

PLoS Comput Biol. 2020 May 12;16(5):e1007764. doi: 10.1371/journal.pcbi.1007764. eCollection 2020 May.

Abstract

Diverse algorithms can integrate transcriptomics with genome-scale metabolic models (GEMs) to build context-specific metabolic models. These algorithms require identification of a list of high confidence (core) reactions from transcriptomics, but parameters related to identification of core reactions, such as thresholding of expression profiles, can significantly change model content. Importantly, current thresholding approaches are burdened with setting singular arbitrary thresholds for all genes; thus, resulting in removal of enzymes needed in small amounts and even many housekeeping genes. Here, we describe StanDep, a novel heuristic method for using transcriptomics to identify core reactions prior to building context-specific metabolic models. StanDep clusters gene expression data based on their expression pattern across different contexts and determines thresholds for each cluster using data-dependent statistics, specifically standard deviation and mean. To demonstrate the use of StanDep, we built hundreds of models for the NCI-60 cancer cell lines. These models successfully increased the inclusion of housekeeping reactions, which are often lost in models built using standard thresholding approaches. Further, StanDep also provided a transcriptomic explanation for inclusion of lowly expressed reactions that were otherwise only supported by model extraction methods. Our study also provides novel insights into how cells may deal with context-specific and ubiquitous functions. StanDep, as a MATLAB toolbox, is available at https://github.com/LewisLabUCSD/StanDep.

摘要

多种算法可以将转录组学与基因组规模代谢模型(GEM)相结合,构建特定于上下文的代谢模型。这些算法需要从转录组学中识别出一组高可信度(核心)反应,但与识别核心反应相关的参数,如表达谱的阈值,会显著改变模型的内容。重要的是,当前的阈值方法存在为所有基因设置单一任意阈值的负担;因此,会导致去除少量甚至许多管家基因所需的酶。在这里,我们描述了 StanDep,这是一种在构建特定于上下文的代谢模型之前,使用转录组学来识别核心反应的新启发式方法。StanDep 基于不同上下文中的基因表达模式对基因表达数据进行聚类,并使用依赖于数据的统计信息(特别是标准差和平均值)为每个聚类确定阈值。为了演示 StanDep 的使用,我们为 NCI-60 癌细胞系构建了数百个模型。这些模型成功地增加了管家反应的纳入,而这些反应在使用标准阈值方法构建的模型中经常丢失。此外,StanDep 还为纳入低表达反应提供了转录组学解释,否则这些反应仅得到模型提取方法的支持。我们的研究还为细胞如何处理特定于上下文和普遍的功能提供了新的见解。作为一个 MATLAB 工具箱,StanDep 可在 https://github.com/LewisLabUCSD/StanDep 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd26/7244210/37cc98ccfe37/pcbi.1007764.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验