Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Republic of Korea.
College of Life Science, Gangneung-Wonju National University, Gangneung, Gangwon-do, Republic of Korea.
J Physiol Pharmacol. 2020 Oct;71(5). doi: 10.26402/jpp.2020.5.10. Epub 2021 Feb 8.
Pancreatic beta-cell dysfunction results in reductions of insulin synthesis/secretion, cell survival, and insulin sensitivity thereby inducing diabetes mellitus. In this study, how nanomolar melatonin regulates insulin synthesis and secretion in rat insulinoma INS-1E cells was investigated. At melatonin concentrations of 10 - 100 nM for 48 hours, melatonin significantly increased the insulin protein level in INS-1E cells above the level in control cells without melatonin or glucose treatments and decreased the insulin level in media with glucose: increases in insulin synthesis and decreases in insulin secretion occurred in dose-dependent manners. Luzindole or 4-phenyl-2-propionamidotetralin (4P-PDOT), melatonin receptor antagonists, inhibited the melatonin-induced insulin level in cells and media. Levels of membrane vesicle trafficking-related proteins including Rab5, GOPC, phospho-caveolin-1, EEA1, and clathrin proteins significantly increased with melatonin treatment above that in control cells without melatonin or glucose treatments, whereas expressions of APPL1 and syntaxin-6 proteins significantly decreased with melatonin treatment. The increases in the phosphorylation of mammalian target of rapamycin (p-mTOR), raptor protein, and mTOR complex 1 (mTORC1) levels were consistent with the increments in the expressions of p-Akt (Ser473, Thr308) and stress-induced IRE1α/p-eIF2α proteins in the endoplasmic reticulum following melatonin treatment. also, expression levels of Bcl-2 and Bcl-xl proteins were significantly increased compared to those in control cells without melatonin or glucose treatments, whereas the Bax protein level decreased. These results indicate that nanomolar melatonin regulates insulin synthesis and secretion associated with membrane vesicle trafficking-related proteins, including Rab5, GOPC, p-Caveolin-1, EEA1, and clathrin, through the Akt/mTOR pathway.
胰岛β细胞功能障碍导致胰岛素合成/分泌减少、细胞存活和胰岛素敏感性降低,从而导致糖尿病。本研究旨在探讨纳摩尔水平的褪黑素如何调节大鼠胰岛素瘤 INS-1E 细胞的胰岛素合成和分泌。在 10-100 nM 褪黑素浓度下处理 48 小时,褪黑素可显著增加 INS-1E 细胞中的胰岛素蛋白水平,高于无褪黑素或葡萄糖处理的对照细胞水平,并降低含葡萄糖的培养基中的胰岛素水平:胰岛素合成增加,胰岛素分泌减少呈剂量依赖性。褪黑素受体拮抗剂 luzindole 或 4-苯基-2-丙酰胺四氢萘(4P-PDOT)抑制了细胞和培养基中褪黑素诱导的胰岛素水平。与无褪黑素或葡萄糖处理的对照细胞相比,褪黑素处理后膜囊泡转运相关蛋白(包括 Rab5、GOPC、磷酸化小窝蛋白-1、EEA1 和网格蛋白蛋白)的水平显著增加,而 APPL1 和 syntaxin-6 蛋白的表达则显著减少。哺乳动物雷帕霉素靶蛋白(mTOR)、雷帕霉素相关蛋白(raptor)和 mTOR 复合物 1(mTORC1)的磷酸化水平增加与磷酸化蛋白激酶 B(p-Akt)(Ser473、Thr308)和内质网应激诱导的 IRE1α/p-eIF2α 蛋白的表达增加一致。此外,与无褪黑素或葡萄糖处理的对照细胞相比,Bcl-2 和 Bcl-xl 蛋白的表达水平显著增加,而 Bax 蛋白水平降低。这些结果表明,纳摩尔水平的褪黑素通过 Akt/mTOR 通路调节胰岛素合成和分泌,与膜囊泡转运相关蛋白(包括 Rab5、GOPC、磷酸化小窝蛋白-1、EEA1 和网格蛋白蛋白)有关。