CRC Scotland & London, Eccleston Square, London SW1V 1PG, UK.
Int J Mol Sci. 2023 Feb 7;24(4):3300. doi: 10.3390/ijms24043300.
Type 1 diabetes mellitus (T1DM) arises from the failure of pancreatic β-cells to produce adequate insulin, usually as a consequence of extensive pancreatic β-cell destruction. T1DM is classed as an immune-mediated condition. However, the processes that drive pancreatic β-cell apoptosis remain to be determined, resulting in a failure to prevent ongoing cellular destruction. Alteration in mitochondrial function is clearly the major pathophysiological process underpinning pancreatic β-cell loss in T1DM. As with many medical conditions, there is a growing interest in T1DM as to the role of the gut microbiome, including the interactions of gut bacteria with fungal infection. Gut dysbiosis and gut permeability are intimately associated with raised levels of circulating lipopolysaccharide and suppressed butyrate levels, which can act to dysregulate immune responses and systemic mitochondrial function. This manuscript reviews broad bodies of data on T1DM pathophysiology, highlighting the importance of alterations in the mitochondrial melatonergic pathway of pancreatic β-cells in driving mitochondrial dysfunction. The suppression of mitochondrial melatonin makes pancreatic β-cells susceptible to oxidative stress and dysfunctional mitophagy, partly mediated by the loss of melatonin's induction of PTEN-induced kinase 1 (PINK1), thereby suppressing mitophagy and increasing autoimmune associated major histocompatibility complex (MHC)-1. The immediate precursor to melatonin, -acetylserotonin (NAS), is a brain-derived neurotrophic factor (BDNF) mimic, via the activation of the BDNF receptor, TrkB. As both the full-length and truncated TrkB play powerful roles in pancreatic β-cell function and survival, NAS is another important aspect of the melatonergic pathway relevant to pancreatic β-cell destruction in T1DM. The incorporation of the mitochondrial melatonergic pathway in T1DM pathophysiology integrates wide bodies of previously disparate data on pancreatic intercellular processes. The suppression of , , butyrate, and the shikimate pathway-including by bacteriophages-contributes to not only pancreatic β-cell apoptosis, but also to the bystander activation of CD8 T cells, which increases their effector function and prevents their deselection in the thymus. The gut microbiome is therefore a significant determinant of the mitochondrial dysfunction driving pancreatic β-cell loss as well as 'autoimmune' effects derived from cytotoxic CD8 T cells. This has significant future research and treatment implications.
1 型糖尿病(T1DM)是由于胰腺β细胞无法产生足够的胰岛素引起的,通常是由于胰腺β细胞广泛破坏的结果。T1DM 被归类为免疫介导的疾病。然而,导致胰腺β细胞凋亡的过程仍有待确定,导致无法阻止持续的细胞破坏。线粒体功能的改变显然是 T1DM 中胰腺β细胞丢失的主要病理生理过程。与许多医学病症一样,人们对 T1DM 中肠道微生物组的作用越来越感兴趣,包括肠道细菌与真菌感染的相互作用。肠道菌群失调和肠道通透性与循环内毒素水平升高和丁酸盐水平降低密切相关,这可能导致免疫反应和全身线粒体功能失调。本文综述了大量关于 T1DM 病理生理学的数据,强调了胰腺β细胞中线粒体褪黑素途径改变在驱动线粒体功能障碍中的重要性。线粒体褪黑素的抑制使胰腺β细胞易受氧化应激和功能失调的自噬作用的影响,部分是由褪黑素诱导的 PTEN 诱导激酶 1(PINK1)的丧失介导的,从而抑制自噬并增加与自身免疫相关的主要组织相容性复合体(MHC)-1。褪黑素的直接前体,-乙酰色胺(NAS),是一种脑源性神经营养因子(BDNF)模拟物,通过激活 BDNF 受体 TrkB。由于全长和截断的 TrkB 在胰腺β细胞功能和存活中都发挥着强大的作用,因此 NAS 是与 T1DM 中胰腺β细胞破坏相关的褪黑素途径的另一个重要方面。将线粒体褪黑素途径纳入 T1DM 病理生理学中,整合了以前关于胰腺细胞间过程的大量不同数据。 、 、丁酸盐和莽草酸途径的抑制-包括噬菌体的作用-不仅导致胰腺β细胞凋亡,还导致 CD8 T 细胞的旁观者激活,这增加了它们的效应功能,并防止它们在胸腺中被选择。因此,肠道微生物组是导致胰腺β细胞丢失以及源自细胞毒性 CD8 T 细胞的“自身免疫”效应的线粒体功能障碍的重要决定因素。这具有重要的未来研究和治疗意义。