Mamprin Marco, Zelis Jo M, Tonino Pim A L, Zinger Sveta, de With Peter H N
Department of Electrical Engineering, Eindhoven University of Technology, 5612 AJ Eindhoven, The Netherlands.
Department of Cardiology, Catharina Hospital, 5623 EJ Eindhoven, The Netherlands.
Bioengineering (Basel). 2021 Feb 9;8(2):22. doi: 10.3390/bioengineering8020022.
Current prognostic risk scores in cardiac surgery do not benefit yet from machine learning (ML). This research aims to create a machine learning model to predict one-year mortality of a patient after transcatheter aortic valve implantation (TAVI). We adopt a modern gradient boosting on decision trees classifier (GBDTs), specifically designed for categorical features. In combination with a recent technique for model interpretations, we developed a feature analysis and selection stage, enabling the identification of the most important features for the prediction. We base our prediction model on the most relevant features, after interpreting and discussing the feature analysis results with clinical experts. We validated our model on 270 consecutive TAVI cases, reaching a C-statistic of 0.83 with CI [0.82, 0.84]. The model has achieved a positive predictive value ranging from 57% to 64%, suggesting that the patient selection made by the heart team of professionals can be further improved by taking into consideration the clinical data we identified as important and by exploiting ML approaches in the development of clinical risk scores. Our approach has shown promising predictive potential also with respect to widespread prognostic risk scores, such as logistic European system for cardiac operative risk evaluation (EuroSCORE II) and the society of thoracic surgeons (STS) risk score, which are broadly adopted by cardiologists worldwide.
目前心脏手术中的预后风险评分尚未从机器学习(ML)中受益。本研究旨在创建一个机器学习模型,以预测经导管主动脉瓣植入术(TAVI)后患者的一年死亡率。我们采用了一种专门为分类特征设计的现代决策树梯度提升分类器(GBDTs)。结合一种最新的模型解释技术,我们开发了一个特征分析和选择阶段,能够识别预测中最重要的特征。在与临床专家解释和讨论特征分析结果后,我们基于最相关的特征构建了预测模型。我们在270例连续的TAVI病例上验证了我们的模型,C统计量达到0.83,置信区间为[0.82, 0.84]。该模型的阳性预测值在57%至64%之间,这表明专业心脏团队进行的患者选择可以通过考虑我们确定为重要的临床数据以及在临床风险评分的开发中利用机器学习方法来进一步改进。我们的方法在广泛使用的预后风险评分方面也显示出了有前景的预测潜力,如逻辑欧洲心脏手术风险评估系统(EuroSCORE II)和胸外科医师协会(STS)风险评分,这些评分在全球心脏病专家中被广泛采用。