Suppr超能文献

使用光纤的超维成像对比度

Hyperdimensional Imaging Contrast Using an Optical Fiber.

作者信息

Chacko Jenu V, Lee Han Nim, Wu Wenxin, Otegui Marisa S, Eliceiri Kevin W

机构信息

Center for Quantitative Cell Imaging, University of Wisconsin, Madison, WI 53706, USA.

Department of Botany, University of Wisconsin, Madison, WI, 53706, USA.

出版信息

Sensors (Basel). 2021 Feb 9;21(4):1201. doi: 10.3390/s21041201.

Abstract

Fluorescence properties of a molecule can be used to study the structural and functional nature of biological processes. Physical properties, including fluorescence lifetime, emission spectrum, emission polarization, and others, help researchers probe a molecule, produce desired effects, and infer causes and consequences. Correlative imaging techniques such as hyperdimensional imaging microscopy (HDIM) combine the physical properties and biochemical states of a fluorophore. Here we present a fiber-based imaging system that can generate hyper-dimensional contrast by combining multiple fluorescence properties into a single fluorescence lifetime decay curve. Fluorescence lifetime imaging microscopy (FLIM) with controlled excitation polarization and temporally dispersed emission can generate a spectrally coded, polarization-filtered lifetime distribution for a pixel. This HDIM scheme generates a better contrast between different molecules than that from individual techniques. This setup uses only a single detector and is simpler to implement, modular, cost-efficient, and adaptable to any existing FLIM microscope. We present higher contrast data from epidermal cells based on intrinsic anthocyanin emission properties under multiphoton excitation. This work lays the foundation for an alternative hyperdimensional imaging system and demonstrates that contrast-based imaging is useful to study cellular heterogeneity in biological samples.

摘要

分子的荧光特性可用于研究生物过程的结构和功能性质。包括荧光寿命、发射光谱、发射偏振等在内的物理性质,有助于研究人员探测分子、产生预期效果并推断因果关系。诸如超维成像显微镜(HDIM)等相关成像技术将荧光团的物理性质和生化状态结合起来。在此,我们展示了一种基于光纤的成像系统,该系统可通过将多种荧光特性组合到单个荧光寿命衰减曲线中来生成超维对比度。具有可控激发偏振和时间分散发射的荧光寿命成像显微镜(FLIM)可为一个像素生成光谱编码、偏振滤波的寿命分布。这种HDIM方案比单个技术在不同分子之间产生更好的对比度。此设置仅使用单个探测器,实施起来更简单、模块化、成本效益高且适用于任何现有的FLIM显微镜。我们基于多光子激发下的固有花青素发射特性,展示了来自表皮细胞的更高对比度数据。这项工作为替代超维成像系统奠定了基础,并证明基于对比度的成像对于研究生物样品中的细胞异质性很有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c18d/7914562/c919c75526e2/sensors-21-01201-g001.jpg

相似文献

1
Hyperdimensional Imaging Contrast Using an Optical Fiber.
Sensors (Basel). 2021 Feb 9;21(4):1201. doi: 10.3390/s21041201.
2
3
Time-domain whole-field fluorescence lifetime imaging with optical sectioning.
J Microsc. 2001 Sep;203(Pt 3):246-57. doi: 10.1046/j.1365-2818.2001.00894.x.
4
Imaging Vacuolar Anthocyanins with Fluorescence Lifetime Microscopy (FLIM).
Methods Mol Biol. 2018;1789:131-141. doi: 10.1007/978-1-4939-7856-4_10.
5
Fluorescence lifetime imaging microscopy for quantitative biological imaging.
Methods Cell Biol. 2013;114:457-88. doi: 10.1016/B978-0-12-407761-4.00020-8.
6
Maximizing the biochemical resolving power of fluorescence microscopy.
PLoS One. 2013 Oct 28;8(10):e77392. doi: 10.1371/journal.pone.0077392. eCollection 2013.
7
Phasor Analysis of Fluorescence Lifetime Enables Quantitative Multiplexed Molecular Imaging of Three Probes.
Anal Chem. 2022 Oct 18;94(41):14185-14194. doi: 10.1021/acs.analchem.2c02149. Epub 2022 Oct 3.
8
Fluorescence lifetime imaging and electron microscopy: a correlative approach.
Histochem Cell Biol. 2022 Jun;157(6):697-702. doi: 10.1007/s00418-022-02094-0. Epub 2022 Mar 10.
10
Quinolinium-Based Fluorescent Probes for Dynamic pH Monitoring in Aqueous Media at High pH Using Fluorescence Lifetime Imaging.
ACS Sens. 2023 May 26;8(5):2050-2059. doi: 10.1021/acssensors.3c00316. Epub 2023 Apr 27.

引用本文的文献

1
Illuminating cellular architecture and dynamics with fluorescence polarization microscopy.
J Cell Sci. 2024 Oct 15;137(20). doi: 10.1242/jcs.261947. Epub 2024 Oct 14.
2
CASPI: collaborative photon processing for active single-photon imaging.
Nat Commun. 2023 May 31;14(1):3158. doi: 10.1038/s41467-023-38893-9.

本文引用的文献

1
FLIMJ: An open-source ImageJ toolkit for fluorescence lifetime image data analysis.
PLoS One. 2020 Dec 30;15(12):e0238327. doi: 10.1371/journal.pone.0238327. eCollection 2020.
2
Cellpose: a generalist algorithm for cellular segmentation.
Nat Methods. 2021 Jan;18(1):100-106. doi: 10.1038/s41592-020-01018-x. Epub 2020 Dec 14.
4
A Shift in Central Metabolism Accompanies Virulence Activation in Pseudomonas aeruginosa.
mBio. 2020 Mar 10;11(2):e02730-18. doi: 10.1128/mBio.02730-18.
5
6
Fast single-cell biochemistry: theory, open source microscopy and applications.
Methods Appl Fluoresc. 2019 Aug 29;7(4):044001. doi: 10.1088/2050-6120/ab3bd2.
7
Enhancing Biochemical Resolution by Hyperdimensional Imaging Microscopy.
Biophys J. 2019 May 21;116(10):1815-1822. doi: 10.1016/j.bpj.2019.04.015. Epub 2019 Apr 22.
8
Multidimensional Fluorescence Microscopy for Simultaneous Functional and Structural Imaging.
Biophys J. 2019 May 21;116(10):1787-1789. doi: 10.1016/j.bpj.2019.04.016. Epub 2019 Apr 22.
9
Imaging Vacuolar Anthocyanins with Fluorescence Lifetime Microscopy (FLIM).
Methods Mol Biol. 2018;1789:131-141. doi: 10.1007/978-1-4939-7856-4_10.
10
Colour bio-factories: Towards scale-up production of anthocyanins in plant cell cultures.
Metab Eng. 2018 Jul;48:218-232. doi: 10.1016/j.ymben.2018.06.004. Epub 2018 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验