Suppr超能文献

用于验证和功能分析三维肺癌模型的生物信息学方法。

Bioinformatic Approaches to Validation and Functional Analysis of 3D Lung Cancer Models.

作者信息

Li P Jonathan, Roose Jeroen P, Jablons David M, Kratz Johannes R

机构信息

Department of Surgery, University of California, San Francisco, CA 94143, USA.

Department of Anatomy, University of California, San Francisco, CA 94143, USA.

出版信息

Cancers (Basel). 2021 Feb 9;13(4):701. doi: 10.3390/cancers13040701.

Abstract

3D models of cancer have the potential to improve basic, translational, and clinical studies. Patient-derived xenografts, spheroids, and organoids are broad categories of 3D models of cancer, and to date, these 3D models of cancer have been established for a variety of cancer types. In lung cancer, for example, 3D models offer a promising new avenue to gain novel insights into lung tumor biology and improve outcomes for patients afflicted with the number one cancer killer worldwide. However, the adoption and utility of these 3D models of cancer vary, and demonstrating the fidelity of these models is a critical first step before seeking meaningful applications. Here, we review use cases of current 3D lung cancer models and bioinformatic approaches to assessing model fidelity. Bioinformatics approaches play a key role in both validating 3D lung cancer models and high dimensional functional analyses to support downstream applications.

摘要

癌症的三维模型有潜力改善基础研究、转化研究和临床研究。患者来源的异种移植瘤、球体和类器官是癌症三维模型的主要类别,迄今为止,这些癌症三维模型已针对多种癌症类型建立。例如,在肺癌中,三维模型为深入了解肺肿瘤生物学和改善全球头号癌症杀手患者的治疗结果提供了一条充满希望的新途径。然而,这些癌症三维模型的采用情况和效用各不相同,在寻求有意义的应用之前,证明这些模型的保真度是关键的第一步。在这里,我们回顾了当前三维肺癌模型的使用案例以及评估模型保真度的生物信息学方法。生物信息学方法在验证三维肺癌模型和支持下游应用的高维功能分析中都发挥着关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b21/7915264/d15e3490045f/cancers-13-00701-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验