Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.
Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.
ACS Appl Mater Interfaces. 2021 Feb 24;13(7):7913-7923. doi: 10.1021/acsami.0c19955. Epub 2021 Feb 12.
Biomimetic biomaterials are being actively explored in the context of cancer immunotherapy because of their ability to directly engage the immune system to generate antitumor responses. Unlike cellular therapies, biomaterial-based immunotherapies can be precisely engineered to exhibit defined characteristics including biodegradability, physical size, and tuned surface presentation of immunomodulatory signals. In particular, modulating the interface between the biomaterial surface and the target biological cell is key to enabling biological functions. Synthetic artificial antigen presenting cells (aAPCs) are promising as a cancer immunotherapy but are limited in clinical translation by the requirement of cell manipulation and adoptive transfer of antigen-specific CD8+ T cells. To move toward acellular aAPC technology for use, we combine poly(lactic--glycolic acid) (PLGA) and cationic poly(beta-amino-ester) (PBAE) to form a biodegradable blend based on the hypothesis that therapeutic aAPCs fabricated from a cationic blend may have improved functions. PLGA/PBAE aAPCs demonstrate enhanced surface interactions with antigen-specific CD8+ T cells that increase T cell activation and expansion , associated with significantly increased conjugation efficiency of T cell stimulatory signals to the aAPCs. Critically, these PLGA/PBAE aAPCs also expand antigen-specific cytotoxic CD8+ T cells without the need of adoptive transfer Treatment with PLGA/PBAE aAPCs in combination with checkpoint therapy decreases tumor growth and extends survival in a B16-F10 melanoma mouse model. These results demonstrate the potential of PLGA/PBAE aAPCs as a biocompatible, directly injectable acellular therapy for cancer immunotherapy.
仿生生物材料在癌症免疫疗法中受到了广泛的关注,因为它们能够直接与免疫系统相互作用,产生抗肿瘤反应。与细胞疗法不同,基于生物材料的免疫疗法可以精确设计,展现出特定的特性,包括可生物降解性、物理尺寸和免疫调节信号的可调表面呈现。特别是,调节生物材料表面与目标生物细胞之间的界面是实现生物功能的关键。合成人工抗原呈递细胞(aAPC)作为癌症免疫疗法具有很大的应用前景,但由于需要对细胞进行操作和过继转移抗原特异性 CD8+T 细胞,其在临床转化方面受到限制。为了推进无细胞 aAPC 技术的应用,我们将聚乳酸-羟基乙酸共聚物(PLGA)和阳离子聚(β-氨基酯)(PBAE)结合在一起,形成一种可生物降解的共混物,其基于这样的假设:由阳离子共混物制备的治疗性 aAPC 可能具有改善的功能。PLGA/PBAE aAPC 与抗原特异性 CD8+T 细胞的表面相互作用增强,可增加 T 细胞的激活和扩增,同时与 aAPC 上 T 细胞刺激信号的缀合效率显著增加有关。重要的是,这些 PLGA/PBAE aAPC 还可以在无需过继转移的情况下扩增抗原特异性细胞毒性 CD8+T 细胞。PLGA/PBAE aAPC 与检查点疗法联合治疗可降低肿瘤生长并延长 B16-F10 黑色素瘤小鼠模型的存活期。这些结果表明,PLGA/PBAE aAPC 作为一种具有生物相容性的、可直接注射的非细胞疗法,具有用于癌症免疫治疗的潜力。