Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France.
Institut de Biologie Physico-Chimique, F-75005 Paris, France.
J Proteome Res. 2023 Mar 3;22(3):996-1002. doi: 10.1021/acs.jproteome.2c00699. Epub 2023 Feb 6.
The simple light isotope metabolic-labeling technique relies on the biosynthesis of amino acids from U-[C]-labeled molecules provided as the sole carbon source. The incorporation of the resulting U-[C]-amino acids into proteins presents several key advantages for mass-spectrometry-based proteomics analysis, as it results in more intense monoisotopic ions, with a better signal-to-noise ratio in bottom-up analysis. In our initial studies, we developed the simple light isotope metabolic (SLIM)-labeling strategy using prototrophic eukaryotic microorganisms, the yeasts and , as well as strains with genetic markers that lead to amino-acid auxotrophy. To extend the range of SLIM-labeling applications, we evaluated (i) the incorporation of U-[C]-glucose into proteins of human cells grown in a complex RPMI-based medium containing the labeled molecule, considering that human cell lines require a large number of essential amino-acids to support their growth, and (ii) an indirect labeling strategy in which the nematode grown on plates was fed U-[C]-labeled bacteria () and the worm proteome analyzed for C incorporation into proteins. In both cases, we were able to demonstrate efficient incorporation of C into the newly synthesized proteins, opening the way for original approaches in quantitative proteomics.
简单轻同位素代谢标记技术依赖于 U-[C]标记分子的生物合成,这些分子被用作唯一的碳源。所得 U-[C]-氨基酸掺入蛋白质中为基于质谱的蛋白质组学分析提供了几个关键优势,因为它导致更强烈的单一同位素离子,在自上而下分析中具有更好的信噪比。在我们的初步研究中,我们使用原养型真核微生物酵母和以及导致氨基酸营养缺陷的遗传标记菌株开发了简单轻同位素代谢 (SLIM) 标记策略。为了扩展 SLIM 标记应用的范围,我们评估了 (i) 在含有标记分子的复杂 RPMI 基础培养基中生长的人细胞的蛋白质中 U-[C]-葡萄糖的掺入,考虑到人细胞系需要大量必需氨基酸来支持它们的生长,以及 (ii) 间接标记策略,其中在平板上生长的线虫喂食 U-[C]标记的细菌 () 并分析蠕虫蛋白质组中 C 掺入蛋白质的情况。在这两种情况下,我们都能够证明 C 有效地掺入新合成的蛋白质中,为定量蛋白质组学的原始方法开辟了道路。