Suppr超能文献

用于主动波破碎分类的深度神经网络。

Deep neural networks for active wave breaking classification.

机构信息

France Energies Marines, 29280, Plouzané, France.

PPGOceano, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil.

出版信息

Sci Rep. 2021 Feb 11;11(1):3604. doi: 10.1038/s41598-021-83188-y.

Abstract

Wave breaking is an important process for energy dissipation in the open ocean and coastal seas. It drives beach morphodynamics, controls air-sea interactions, determines when ship and offshore structure operations can occur safely, and influences on the retrieval of ocean properties from satellites. Still, wave breaking lacks a proper physical understanding mainly due to scarce observational field data. Consequently, new methods and data are required to improve our current understanding of this process. In this paper we present a novel machine learning method to detect active wave breaking, that is, waves that are actively generating visible bubble entrainment in video imagery data. The present method is based on classical machine learning and deep learning techniques and is made freely available to the community alongside this publication. The results indicate that our best performing model had a balanced classification accuracy score of [Formula: see text] 90% when classifying active wave breaking in the test dataset. An example of a direct application of the method includes a statistical description of geometrical and kinematic properties of breaking waves. We expect that the present method and the associated dataset will be crucial for future research related to wave breaking in several areas of research, which include but are not limited to: improving operational forecast models, developing risk assessment and coastal management tools, and refining the retrieval of remotely sensed ocean properties.

摘要

波浪破碎是开阔海域和近岸海域能量耗散的一个重要过程。它驱动着海滩地貌动力学,控制着气海相互作用,决定了船舶和海上结构物何时可以安全作业,并影响着从卫星获取海洋特性的数据。然而,由于缺乏充足的观测现场数据,波浪破碎过程仍然缺乏恰当的物理理解。因此,需要新的方法和数据来提高我们目前对这一过程的认识。在本文中,我们提出了一种新的机器学习方法来检测活跃的波浪破碎,即视频图像数据中主动产生可见气泡卷入的波浪。本方法基于经典机器学习和深度学习技术,并在本文发表的同时向社区免费提供。结果表明,当在测试数据集上对活跃的波浪破碎进行分类时,我们表现最好的模型的平衡分类准确率达到了[Formula: see text]90%。该方法的一个直接应用示例包括对破碎波的几何和运动学特性进行统计描述。我们预计,本方法和相关数据集将对与波浪破碎相关的几个研究领域的未来研究至关重要,这些领域包括但不限于:改进操作预报模型、开发风险评估和海岸管理工具,以及改进远程感知海洋特性的获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1399/7878786/0715e201f79a/41598_2021_83188_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验