Suppr超能文献

利用深度学习从视角对 S2S 业务预报进行准周期信号分析。

Taking advantage of quasi-periodic signals for S2S operational forecast from a perspective of deep learning.

机构信息

Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory of Meteorological Disaster, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China.

School of Atmospheric Sciences, Nanjing University of Information Science and Technology, No. 219 Ningliu Road, Pukou District, Nanjing, 210044, Jiangsu, China.

出版信息

Sci Rep. 2023 Mar 13;13(1):4108. doi: 10.1038/s41598-023-31394-1.

Abstract

The quasi-periodic signals in the earth system could be the predictability source for sub-seasonal to seasonal (S2S) climate prediction because of the connections among the lead-lag time of those signals. The Madden-Julian Oscillation (MJO) is a typical quasi-periodic signal, which is the dominant S2S variability in the tropics. Besides, significantly periodic features in terms of both intensity and location are identified in 10-40 days for the concurrent variation of the subtropical and polar jet streams over Asia in this study. So far, those signals contribute less and are not fully applied to the S2S prediction. The deep learning (DL) approach, especially the long-short term memory (LSTM) networks, has the ability to take advantage of the information at the previous time to improve the prediction after then. This study presents the application of the DL in the postprocessing of S2S prediction using quasi-periodic signals predicted by the operational model to improve the prediction of minimum 2-m air temperature over Asia. With the help of deep learning, it finds the best weights for the ensemble predictions, and the quasi-periodic signals in the atmosphere can further benefit the S2S operational prediction.

摘要

由于这些信号的超前-滞后时间之间存在联系,地球系统中的准周期信号可能是次季节到季节(S2S)气候预测的可预报性来源。 Madden-Julian 振荡(MJO)是一种典型的准周期信号,是热带地区 S2S 主要可变性。此外,本研究还发现,在亚洲副热带和极地急流的同期变化中,存在 10-40 天的显著周期性特征,表现在强度和位置上。到目前为止,这些信号的贡献较小,尚未完全应用于 S2S 预测。深度学习(DL)方法,特别是长短时记忆(LSTM)网络,具有利用先前时间的信息来提高随后预测的能力。本研究提出了在 S2S 预测的后处理中应用基于操作模型预测的准周期信号的 DL 方法,以提高亚洲 2m 最低空气温度的预测。借助深度学习,找到了集合预测的最佳权重,大气中的准周期信号可以进一步促进 S2S 业务预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/323a/10011512/41ce35060959/41598_2023_31394_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验