Suppr超能文献

机器学习可高精度预测肝胰手术后的意外死亡情况。

Machine learning predicts unpredicted deaths with high accuracy following hepatopancreatic surgery.

作者信息

Sahara Kota, Paredes Anghela Z, Tsilimigras Diamantis I, Sasaki Kazunari, Moro Amika, Hyer J Madison, Mehta Rittal, Farooq Syeda A, Wu Lu, Endo Itaru, Pawlik Timothy M

机构信息

Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, USA.

Gastroenterological Surgery Division, Yokohama City University School of Medicine, Yokohama, Japan.

出版信息

Hepatobiliary Surg Nutr. 2021 Jan;10(1):20-30. doi: 10.21037/hbsn.2019.11.30.

Abstract

BACKGROUND

Machine learning to predict morbidity and mortality-especially in a population traditionally considered low risk-has not been previously examined. We sought to characterize the incidence of death among patients with a low estimated morbidity and mortality risk based on the National Surgical Quality Improvement Program (NSQIP) estimated probability (EP), as well as develop a machine learning model to identify individuals at risk for "unpredicted death" (UD) among patients undergoing hepatopancreatic (HP) procedures.

METHODS

The NSQIP database was used to identify patients who underwent elective HP surgery between 2012-2017. The risk of morbidity and mortality was stratified into three tiers (low, intermediate, or high estimated) using a k-means clustering method with bin sorting. A machine learning classification tree and multivariable regression analyses were used to predict 30-day mortality with a 10-fold cross validation. C statistics were used to compare model performance.

RESULTS

Among 63,507 patients who underwent an HP procedure, median patient age was 63 (IQR: 54-71) years. Patients underwent either pancreatectomy (n=38,209, 60.2%) or hepatic resection (n=25,298, 39.8%). Patients were stratified into three tiers of predicted morbidity and mortality risk based on the NSQIP EP: low (n=36,923, 58.1%), intermediate (n=23,609, 37.2%) and high risk (n=2,975, 4.7%). Among 36,923 patients with low estimated risk of morbidity and mortality, 237 patients (0.6%) experienced a UD. According to the classification tree analysis, age was the most important factor to predict UD (importance 16.9) followed by preoperative albumin level (importance: 10.8), disseminated cancer (importance: 6.5), preoperative platelet count (importance: 6.5), and sex (importance 5.9). Among patients deemed to be low risk, the c-statistic for the machine learning derived prediction model was 0.807 compared with an AUC of only 0.662 for the NSQIP EP.

CONCLUSIONS

A prognostic model derived using machine learning methodology performed better than the NSQIP EP in predicting 30-day UD among low risk patients undergoing HP surgery.

摘要

背景

机器学习用于预测发病率和死亡率,尤其是在传统上被认为是低风险的人群中,此前尚未得到研究。我们试图根据国家外科质量改进计划(NSQIP)估计概率(EP)来描述估计发病率和死亡率风险较低的患者的死亡发生率,并开发一种机器学习模型,以识别接受肝胰(HP)手术的患者中存在“意外死亡”(UD)风险的个体。

方法

使用NSQIP数据库识别2012年至2017年间接受择期HP手术的患者。采用k均值聚类法和箱式排序将发病率和死亡率风险分为三层(低、中或高估计)。使用机器学习分类树和多变量回归分析,通过10倍交叉验证来预测30天死亡率。使用C统计量比较模型性能。

结果

在63507例接受HP手术的患者中,患者中位年龄为63岁(四分位间距:54 - 71岁)。患者接受了胰腺切除术(n = 38209,60.2%)或肝切除术(n = 25298,39.8%)。根据NSQIP EP,患者被分为预测发病率和死亡率风险的三层:低风险(n = 36923,58.1%)、中风险(n = 23609,37.2%)和高风险(n = 2975,4.7%)。在36923例估计发病率和死亡率风险较低的患者中,237例(0.6%)发生了意外死亡。根据分类树分析,年龄是预测意外死亡最重要的因素(重要性16.9),其次是术前白蛋白水平(重要性:10.8)、播散性癌症(重要性:6.5)、术前血小板计数(重要性:6.5)和性别(重要性5.9)。在被认为是低风险的患者中,机器学习得出的预测模型的C统计量为0.807,而NSQIP EP的AUC仅为0.662。

结论

在预测接受HP手术的低风险患者的30天意外死亡方面,使用机器学习方法得出的预后模型比NSQIP EP表现更好。

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验