Lin Li, Song Minfang, Jiang Yong, Zhao Xiaojing, Wang Haopeng, Zhang Liye
School of Life Science and Technology, ShanghaiTech University, Pudong, 201210 Shanghai, China.
NAR Genom Bioinform. 2020 Aug 18;2(3):lqaa059. doi: 10.1093/nargab/lqaa059. eCollection 2020 Sep.
Normalization with respect to sequencing depth is a crucial step in single-cell RNA sequencing preprocessing. Most methods normalize data using the whole transcriptome based on the assumption that the majority of transcriptome remains constant and are unable to detect drastic changes of the transcriptome. Here, we develop an algorithm based on a small fraction of constantly expressed genes as internal spike-ins to normalize single-cell RNA sequencing data. We demonstrate that the transcriptome of single cells may undergo drastic changes in several case study datasets and accounting for such heterogeneity by ISnorm (Internal Spike-in-like-genes normalization) improves the performance of downstream analyses.
相对于测序深度进行归一化是单细胞RNA测序预处理中的关键步骤。大多数方法基于转录组的大部分保持不变这一假设,使用整个转录组对数据进行归一化,并且无法检测到转录组的剧烈变化。在此,我们开发了一种基于一小部分持续表达基因作为内部内参的算法,用于对单细胞RNA测序数据进行归一化。我们证明,在几个案例研究数据集中,单细胞的转录组可能会发生剧烈变化,并且通过ISnorm(类内参基因归一化)考虑这种异质性可提高下游分析的性能。