Suppr超能文献

利用社交媒体识别与卵巢癌患者及护理人员需求相关的语言特征。

Identifying Language Features Associated With Needs of Ovarian Cancer Patients and Caregivers Using Social Media.

作者信息

Lee Young Ji, Jang Hyeju, Campbell Grace, Carenini Giuseppe, Thomas Teresa, Donovan Heidi

机构信息

Author Affiliations: School of Nursing (Drs Lee, Campbell, Thomas, and Donovan) and School of Medicine (Drs Lee and Donovan), University of Pittsburgh, Pennsylvania; Department of Computer Science, University of British Columbia (Drs Jang and Carenini), Vancouver, Canada; and School of Health and Rehabilitation Sciences, University of Pittsburgh (Dr Campbell), Pennsylvania.

出版信息

Cancer Nurs. 2022;45(3):E639-E645. doi: 10.1097/NCC.0000000000000928.

Abstract

BACKGROUND

Online health communities (OHCs) can be a source for clinicians to learn the needs of cancer patients and caregivers. Ovarian cancer (OvCa) patients and caregivers deal with a wide range of unmet needs, many of which are expressed in OHCs. An automated need classification model could help clinicians more easily understand and prioritize information available in the OHCs.

OBJECTIVE

The aim of this study was to use initial OHC postings to develop an automated model for the classification of OvCa patient and caregiver needs.

METHODS

We collected data from the OvCa OHC and analyzed the initial postings of patients and caregivers (n = 853). Two annotators coded each posting with 12 types of needs. Then, we applied the machine learning approach with bag-of-words features to build a model to classify needs. F1 score, an indicator of model accuracy, was used to evaluate the model.

RESULTS

The most reported needs were information, social, psychological/emotional, and physical. Thirty-nine percent of postings described information and social needs in the same posting. Our model reported a high level of accuracy for classifying those top needs. Psychological terms were important for classifying psychological/emotional and social needs. Medical terms were important for physical and information needs.

CONCLUSIONS

We demonstrate the potential of using OHCs to supplement traditional needs assessment. Further research would incorporate additional information (eg, trajectory, stage) for more sophisticated models.

IMPLICATIONS FOR PRACTICE

This study shows the potential of automated classification to leverage OHCs for needs assessment. Our approach can be applied to different types of cancer and enhanced by using domain-specific information.

摘要

背景

在线健康社区(OHCs)可以成为临床医生了解癌症患者及其护理人员需求的一个来源。卵巢癌(OvCa)患者及其护理人员面临着广泛未得到满足的需求,其中许多需求在在线健康社区中有所表达。一个自动需求分类模型可以帮助临床医生更轻松地理解在线健康社区中可用的信息并确定其优先级。

目的

本研究的目的是利用在线健康社区的初始帖子开发一个用于分类卵巢癌患者及其护理人员需求的自动模型。

方法

我们从卵巢癌在线健康社区收集数据,并分析了患者及其护理人员的初始帖子(n = 853)。两名注释员用12种需求类型对每个帖子进行编码。然后,我们应用具有词袋特征的机器学习方法来构建一个需求分类模型。使用F1分数(一种模型准确性指标)来评估该模型。

结果

报告最多的需求是信息、社交、心理/情感和身体方面的需求。39%的帖子在同一帖子中描述了信息和社交需求。我们的模型在对那些首要需求进行分类时显示出较高的准确性。心理学术语对于分类心理/情感和社交需求很重要。医学术语对于身体和信息需求很重要。

结论

我们证明了利用在线健康社区来补充传统需求评估的潜力。进一步的研究将纳入更多信息(如病程、阶段)以构建更复杂的模型。

对实践的启示

本研究展示了自动分类在利用在线健康社区进行需求评估方面的潜力。我们的方法可以应用于不同类型的癌症,并通过使用特定领域信息加以改进。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验