Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 31905, Israel.
Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 31905, Israel.
Dev Biol. 2021 May;473:80-89. doi: 10.1016/j.ydbio.2021.01.013. Epub 2021 Feb 9.
Organisms can uptake minerals, shape them in different forms and generate teeth, skeletons or shells that support and protect them. Mineral uptake, trafficking and nucleation are tightly regulated by the biomineralizing cells through networks of specialized proteins. Specifically, matrix metalloproteases (MMPs) digest various extracellular substrates and allow for mineralization in the vertebrates' teeth and bones, but little is known about their role in invertebrates' systems. The sea urchin embryo provides an excellent invertebrate model for genetic and molecular studies of biomineralization. MMP inhibition prevents the growth of the calcite spicules of the sea urchin larval skeleton, however, the molecular mechanisms and genes that underlie this response are not well understood. Here we study the spatial expression and regulation of two membrane type MMPs that were found to be occluded in the sea urchin spicules, Pl-MmpL7 and Pl-MmpL5, and investigate the function of Pl-MmpL7 in skeletogenesis. The inhibition of MMPs does not change the volume of the calcium vesicles in the skeletogenic cells. The expression of Pl-MmpL7 and Pl-MmpL5 is regulated by the Vascular Endothelial Growth Factor (VEGF) signaling, from the time of skeleton initiation and on. The expression of these genes is localized to the subsets of skeletogenic cells where active spicule growth occurs throughout skeletogenesis. Downregulation of Pl-MmpL7 expression delays the growth of the skeletal rods and in some cases, strongly perturbs skeletal shape. The localized expression of Pl-MmpL7 and Pl-MmpL5 to the active growth zone and the effect of Pl-MmpL7 perturbations on skeletal growth, suggest that these genes are essential for normal spicule elongation in the sea urchin embryo.
生物可以吸收矿物质,将其转化为不同的形态,并生成牙齿、骨骼或外壳来支撑和保护自身。生物矿化细胞通过一系列专门的蛋白质网络,严格调控矿物质的吸收、运输和成核。具体来说,基质金属蛋白酶(MMPs)可消化各种细胞外基质,并允许脊椎动物的牙齿和骨骼矿化,但它们在无脊椎动物系统中的作用知之甚少。海胆胚胎为研究生物矿化的遗传和分子提供了极好的无脊椎动物模型。MMP 抑制剂可阻止海胆幼虫骨骼中方解石刺的生长,但这种反应的分子机制和相关基因尚未得到很好的理解。在这里,我们研究了两种膜型 MMP(Pl-MmpL7 和 Pl-MmpL5)的空间表达和调控,发现它们在海胆刺中被封闭,并研究了 Pl-MmpL7 在骨骼发生中的功能。MMP 抑制剂的抑制作用不会改变骨骼生成细胞中钙囊泡的体积。Pl-MmpL7 和 Pl-MmpL5 的表达受血管内皮生长因子(VEGF)信号通路的调控,从骨骼起始到骨骼发生的整个过程中都是如此。这些基因的表达定位于骨骼生成细胞的亚群中,这些细胞在骨骼发生过程中刺的生长活跃。Pl-MmpL7 表达的下调会延迟骨骼棒的生长,在某些情况下,会严重干扰骨骼形状。Pl-MmpL7 和 Pl-MmpL5 在活跃生长区的定位表达以及 Pl-MmpL7 干扰对骨骼生长的影响,表明这些基因对于海胆胚胎中正常刺的伸长是必不可少的。