Marine Biology Department, Charney School of Marine Sciences, the University of Haifa, Haifa, Israel.
Dept of Electrical Engineering, Drexel University, Pennsylvania, United States of America.
PLoS Comput Biol. 2021 Feb 22;17(2):e1008780. doi: 10.1371/journal.pcbi.1008780. eCollection 2021 Feb.
Biomineralization is the process by which organisms use minerals to harden their tissues and provide them with physical support. Biomineralizing cells concentrate the mineral in vesicles that they secret into a dedicated compartment where crystallization occurs. The dynamics of vesicle motion and the molecular mechanisms that control it, are not well understood. Sea urchin larval skeletogenesis provides an excellent platform for investigating the kinetics of mineral-bearing vesicles. Here we used lattice light-sheet microscopy to study the three-dimensional (3D) dynamics of calcium-bearing vesicles in the cells of normal sea urchin embryos and of embryos where skeletogenesis is blocked through the inhibition of Vascular Endothelial Growth Factor Receptor (VEGFR). We developed computational tools for displaying 3D-volumetric movies and for automatically quantifying vesicle dynamics. Our findings imply that calcium vesicles perform an active diffusion motion in both, calcifying (skeletogenic) and non-calcifying (ectodermal) cells of the embryo. The diffusion coefficient and vesicle speed are larger in the mesenchymal skeletogenic cells compared to the epithelial ectodermal cells. These differences are possibly due to the distinct mechanical properties of the two tissues, demonstrated by the enhanced f-actin accumulation and myosinII activity in the ectodermal cells compared to the skeletogenic cells. Vesicle motion is not directed toward the biomineralization compartment, but the vesicles slow down when they approach it, and probably bind for mineral deposition. VEGFR inhibition leads to an increase of vesicle volume but hardly changes vesicle kinetics and doesn't affect f-actin accumulation and myosinII activity. Thus, calcium vesicles perform an active diffusion motion in the cells of the sea urchin embryo, with diffusion length and speed that inversely correlate with the strength of the actomyosin network. Overall, our studies provide an unprecedented view of calcium vesicle 3D-dynamics and point toward cytoskeleton remodeling as an important effector of the motion of mineral-bearing vesicles.
生物矿化是生物体利用矿物质来硬化组织并为其提供物理支撑的过程。生物矿化细胞将矿物质浓缩在囊泡中,然后将其分泌到专门的隔室中,在那里发生结晶。囊泡运动的动力学及其控制的分子机制尚不清楚。海胆幼虫骨骼发生为研究含矿物质囊泡的动力学提供了极好的平台。在这里,我们使用晶格光片显微镜研究了正常海胆胚胎细胞中和通过抑制血管内皮生长因子受体 (VEGFR) 阻止骨骼发生的胚胎细胞中含钙囊泡的三维 (3D) 动力学。我们开发了用于显示 3D 体积电影和自动量化囊泡动力学的计算工具。我们的发现表明,钙囊泡在胚胎的钙化(骨骼发生)和非钙化(外胚层)细胞中均进行主动扩散运动。与上皮外胚层细胞相比,间充质骨骼发生细胞中的扩散系数和囊泡速度更大。这些差异可能是由于两种组织的机械特性不同所致,在外胚层细胞中,肌动蛋白和肌球蛋白 II 的积累增强,而在骨骼发生细胞中则没有。囊泡运动不是朝向生物矿化隔室的,但当它们接近隔室时会减速,并且可能结合进行矿物质沉积。VEGFR 抑制导致囊泡体积增加,但几乎不改变囊泡动力学,也不影响肌动蛋白和肌球蛋白 II 的积累。因此,钙囊泡在海胆胚胎细胞中进行主动扩散运动,扩散长度和速度与肌动球蛋白网络的强度成反比。总的来说,我们的研究提供了钙囊泡 3D 动力学的前所未有的视角,并指出细胞骨架重塑是载矿物质囊泡运动的重要效应子。