Suppr超能文献

氨基酸代谢与自噬在骨骼发育和稳态中的作用

Amino acid metabolism and autophagy in skeletal development and homeostasis.

机构信息

Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA.

Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.

出版信息

Bone. 2021 May;146:115881. doi: 10.1016/j.bone.2021.115881. Epub 2021 Feb 10.

Abstract

Bone is an active organ that is continuously remodeled throughout life via formation and resorption; therefore, a fine-tuned bone (re)modeling is crucial for bone homeostasis and is closely connected with energy metabolism. Amino acids are essential for various cellular functions as well as an energy source, and their synthesis and catabolism (e.g., metabolism of carbohydrates and fatty acids) are regulated through numerous enzymatic cascades. In addition, the intracellular levels of amino acids are maintained by autophagy, a cellular recycling system for proteins and organelles; under nutrient deprivation conditions, autophagy is strongly induced to compensate for cellular demands and to restore the amino acid pool. Metabolites derived from amino acids are known to be precursors of bioactive molecules such as second messengers and neurotransmitters, which control various cellular processes, including cell proliferation, differentiation, and homeostasis. Thus, amino acid metabolism and autophagy are tightly and reciprocally regulated in our bodies. This review discusses the current knowledge and potential links between bone diseases and deficiencies in amino acid metabolism and autophagy.

摘要

骨骼是一种活跃的器官,它在一生中通过形成和吸收不断进行重塑;因此,精细的骨骼(再)塑造对于骨骼内稳态至关重要,并且与能量代谢密切相关。氨基酸是各种细胞功能和能量来源所必需的,它们的合成和分解代谢(例如碳水化合物和脂肪酸的代谢)通过许多酶级联反应进行调节。此外,氨基酸的细胞内水平通过自噬来维持,自噬是一种用于蛋白质和细胞器的细胞回收系统;在营养缺乏的情况下,自噬会被强烈诱导以补偿细胞需求并恢复氨基酸库。已知氨基酸衍生的代谢物是生物活性分子(如第二信使和神经递质)的前体,这些分子控制着包括细胞增殖、分化和内稳态在内的各种细胞过程。因此,氨基酸代谢和自噬在我们体内是紧密且相互调节的。这篇综述讨论了当前关于骨骼疾病与氨基酸代谢和自噬缺陷之间潜在联系的知识。

相似文献

1
Amino acid metabolism and autophagy in skeletal development and homeostasis.
Bone. 2021 May;146:115881. doi: 10.1016/j.bone.2021.115881. Epub 2021 Feb 10.
2
Amino acids and autophagy: cross-talk and co-operation to control cellular homeostasis.
Amino Acids. 2015 Oct;47(10):2065-88. doi: 10.1007/s00726-014-1775-2. Epub 2014 Jun 26.
3
Amino Acid Homeostasis in Mammalian Cells with a Focus on Amino Acid Transport.
J Nutr. 2022 Jan 11;152(1):16-28. doi: 10.1093/jn/nxab342.
4
Amino acid homeostasis and chronological longevity in Saccharomyces cerevisiae.
Subcell Biochem. 2012;57:161-86. doi: 10.1007/978-94-007-2561-4_8.
5
Autophagy and Energy Metabolism.
Adv Exp Med Biol. 2019;1206:329-357. doi: 10.1007/978-981-15-0602-4_16.
6
Balancing nutrient and energy demand and supply via autophagy.
Curr Biol. 2022 Jun 20;32(12):R684-R696. doi: 10.1016/j.cub.2022.04.071.
7
Macroautophagy and its role in nutrient homeostasis.
Nutr Rev. 2009 Dec;67(12):677-89. doi: 10.1111/j.1753-4887.2009.00252.x.
9
Amino acid homeostasis and signalling in mammalian cells and organisms.
Biochem J. 2017 May 25;474(12):1935-1963. doi: 10.1042/BCJ20160822.
10
Self-Eating for Muscle Fitness: Autophagy in the Control of Energy Metabolism.
Dev Cell. 2020 Jul 20;54(2):268-281. doi: 10.1016/j.devcel.2020.06.030.

引用本文的文献

1
Current state of the treatment landscape of phenylketonuria.
Orphanet J Rare Dis. 2025 Jun 5;20(1):281. doi: 10.1186/s13023-025-03840-y.
3
Plasma levels of amino acids and osteoporosis: a cross-sectional study.
Sci Rep. 2025 Mar 21;15(1):9811. doi: 10.1038/s41598-025-94766-9.
4
Causal inference study of plasma proteins and blood metabolites mediating the effect of obesity-related indicators on osteoporosis.
Front Endocrinol (Lausanne). 2025 Feb 18;16:1435295. doi: 10.3389/fendo.2025.1435295. eCollection 2025.
5
Autophagy: Are Amino Acid Signals Dependent on the mTORC1 Pathway or Independent?
Curr Issues Mol Biol. 2024 Aug 13;46(8):8780-8793. doi: 10.3390/cimb46080519.
6
Effects of Low-Salinity Stress on Histology and Metabolomics in the Intestine of .
Animals (Basel). 2024 Jun 26;14(13):1880. doi: 10.3390/ani14131880.
8
9
The regulation of amino acid metabolism in tumor cell death: from the perspective of physiological functions.
Apoptosis. 2023 Oct;28(9-10):1304-1314. doi: 10.1007/s10495-023-01875-9. Epub 2023 Jul 31.
10
Integrative Analysis Reveals the Diverse Effects of 3D Stiffness upon Stem Cell Fate.
Int J Mol Sci. 2023 May 26;24(11):9311. doi: 10.3390/ijms24119311.

本文引用的文献

1
Amino acid-dependent control of mTORC1 signaling: a variety of regulatory modes.
J Biomed Sci. 2020 Aug 17;27(1):87. doi: 10.1186/s12929-020-00679-2.
3
Glutamine Metabolism Controls Chondrocyte Identity and Function.
Dev Cell. 2020 Jun 8;53(5):530-544.e8. doi: 10.1016/j.devcel.2020.05.001. Epub 2020 May 28.
4
The Amino Acid Sensor Eif2ak4/GCN2 Is Required for Proliferation of Osteoblast Progenitors in Mice.
J Bone Miner Res. 2020 Oct;35(10):2004-2014. doi: 10.1002/jbmr.4091. Epub 2020 Jul 6.
6
Tryptophan in health and disease.
Adv Clin Chem. 2020;95:165-218. doi: 10.1016/bs.acc.2019.08.005. Epub 2019 Oct 15.
8
The Roles of FoxO Transcription Factors in Regulation of Bone Cells Function.
Int J Mol Sci. 2020 Jan 21;21(3):692. doi: 10.3390/ijms21030692.
10
N-methyl-D-aspartate (NMDA) receptor expression and function is required for early chondrogenesis.
Cell Commun Signal. 2019 Dec 16;17(1):166. doi: 10.1186/s12964-019-0487-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验