Suppr超能文献

多时空尺度空气污染预测的深度神经网络方法。

Multi-Horizon Air Pollution Forecasting with Deep Neural Networks.

机构信息

Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia.

Department of Computer Science, American University, Washington, DC 20016, USA.

出版信息

Sensors (Basel). 2021 Feb 10;21(4):1235. doi: 10.3390/s21041235.

Abstract

Air pollution is a global problem, especially in urban areas where the population density is very high due to the diverse pollutant sources such as vehicles, industrial plants, buildings, and waste. North Macedonia, as a developing country, has a serious problem with air pollution. The problem is highly present in its capital city, Skopje, where air pollution places it consistently within the top 10 cities in the world during the winter months. In this work, we propose using Recurrent Neural Network (RNN) models with long short-term memory units to predict the level of PM10 particles at 6, 12, and 24 h in the future. We employ historical air quality measurement data from sensors placed at multiple locations in Skopje and meteorological conditions such as temperature and humidity. We compare different deep learning models' performance to an Auto-regressive Integrated Moving Average (ARIMA) model. The obtained results show that the proposed models consistently outperform the baseline model and can be successfully employed for air pollution prediction. Ultimately, we demonstrate that these models can help decision-makers and local authorities better manage the air pollution consequences by taking proactive measures.

摘要

空气污染是一个全球性的问题,尤其是在人口密度非常高的城市地区,因为那里有各种各样的污染源,如车辆、工业工厂、建筑物和废物。北马其顿作为一个发展中国家,空气污染问题非常严重。这个问题在其首都斯科普里尤为突出,该市冬季的空气污染程度经常位居全球前 10 名城市之列。在这项工作中,我们提出使用具有长短期记忆单元的递归神经网络 (RNN) 模型来预测未来 6、12 和 24 小时内 PM10 颗粒的水平。我们利用放置在斯科普里多个地点的传感器和气象条件(如温度和湿度)的历史空气质量测量数据。我们比较了不同的深度学习模型与自回归综合移动平均 (ARIMA) 模型的性能。结果表明,所提出的模型始终优于基准模型,可以成功地用于空气污染预测。最终,我们证明这些模型可以通过采取主动措施帮助决策者和地方当局更好地管理空气污染后果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1764/7916344/55090d381028/sensors-21-01235-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验