Babu Saheer Lakshmi, Bhasy Ajay, Maktabdar Mahdi, Zarrin Javad
Faculty of Science and Engineering, Anglia Ruskin University, Cambridge, United Kingdom.
Front Big Data. 2022 Mar 25;5:822573. doi: 10.3389/fdata.2022.822573. eCollection 2022.
Monitoring, predicting, and controlling the air quality in urban areas is one of the effective solutions for tackling the climate change problem. Leveraging the availability of big data in different domains like pollutant concentration, urban traffic, aerial imagery of terrains and vegetation, and weather conditions can aid in understanding the interactions between these factors and building a reliable air quality prediction model. This research proposes a novel cost-effective and efficient air quality modeling framework including all these factors employing state-of-the-art artificial intelligence techniques. The framework also includes a novel deep learning-based vegetation detection system using aerial images. The pilot study conducted in the UK city of Cambridge using the proposed framework investigates various predictive models ranging from statistical to machine learning and deep recurrent neural network models. This framework opens up possibilities of broadening air quality modeling and prediction to other domains like vegetation or green space planning or green traffic routing for sustainable urban cities. The research is mainly focused on extracting strong pieces of evidence which could be useful in proposing better policies around climate change.
监测、预测和控制城市空气质量是应对气候变化问题的有效解决方案之一。利用不同领域的大数据,如污染物浓度、城市交通、地形和植被的航空图像以及天气状况,有助于理解这些因素之间的相互作用,并建立可靠的空气质量预测模型。本研究提出了一种新颖的具有成本效益且高效的空气质量建模框架,该框架利用先进的人工智能技术纳入了所有这些因素。该框架还包括一个使用航空图像的基于深度学习的新型植被检测系统。在英国剑桥市使用所提出的框架进行的试点研究,调查了从统计模型到机器学习模型以及深度循环神经网络模型等各种预测模型。该框架为将空气质量建模和预测扩展到其他领域(如植被或绿地规划或绿色交通路线规划)以实现城市可持续发展开辟了可能性。该研究主要致力于提取有力的证据,这些证据可能有助于围绕气候变化提出更好的政策。