Suppr超能文献

单核细胞增生李斯特菌恢复过程中高压处理诱导的转录组反应

High-pressure processing-induced transcriptome response during recovery of Listeria monocytogenes.

作者信息

Duru Ilhan Cem, Bucur Florentina Ionela, Andreevskaya Margarita, Nikparvar Bahareh, Ylinen Anne, Grigore-Gurgu Leontina, Rode Tone Mari, Crauwels Peter, Laine Pia, Paulin Lars, Løvdal Trond, Riedel Christian U, Bar Nadav, Borda Daniela, Nicolau Anca Ioana, Auvinen Petri

机构信息

Institute of Biotechnology, University of Helsinki, Helsinki, Finland.

Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania.

出版信息

BMC Genomics. 2021 Feb 12;22(1):117. doi: 10.1186/s12864-021-07407-6.

Abstract

BACKGROUND

High-pressure processing (HPP) is a commonly used technique in the food industry to inactivate pathogens, including L. monocytogenes. It has been shown that L. monocytogenes is able to recover from HPP injuries and can start to grow again during long-term cold storage. To date, the gene expression profiling of L. monocytogenes during HPP damage recovery at cooling temperature has not been studied. In order identify key genes that play a role in recovery of the damage caused by HPP treatment, we performed RNA-sequencing (RNA-seq) for two L. monocytogenes strains (barotolerant RO15 and barosensitive ScottA) at nine selected time points (up to 48 h) after treatment with two pressure levels (200 and 400 MPa).

RESULTS

The results showed that a general stress response was activated by SigB after HPP treatment. In addition, the phosphotransferase system (PTS; mostly fructose-, mannose-, galactitol-, cellobiose-, and ascorbate-specific PTS systems), protein folding, and cobalamin biosynthesis were the most upregulated genes during HPP damage recovery. We observed that cell-division-related genes (divIC, dicIVA, ftsE, and ftsX) were downregulated. By contrast, peptidoglycan-synthesis genes (murG, murC, and pbp2A) were upregulated. This indicates that cell-wall repair occurs as a part of HPP damage recovery. We also observed that prophage genes, including anti-CRISPR genes, were induced by HPP. Interestingly, a large amount of RNA-seq data (up to 85%) was mapped to Rli47, which is a non-coding RNA that is upregulated after HPP. Thus, we predicted that Rli47 plays a role in HPP damage recovery in L. monocytogenes. Moreover, gene-deletion experiments showed that amongst peptidoglycan biosynthesis genes, pbp2A mutants are more sensitive to HPP.

CONCLUSIONS

We identified several genes and mechanisms that may play a role in recovery from HPP damage of L. monocytogenes. Our study contributes to new information on pathogen inactivation by HPP.

摘要

背景

高压处理(HPP)是食品工业中常用的一种使包括单核细胞增生李斯特菌在内的病原体失活的技术。研究表明,单核细胞增生李斯特菌能够从HPP损伤中恢复,并在长期冷藏期间重新开始生长。迄今为止,尚未对冷却温度下HPP损伤恢复过程中单核细胞增生李斯特菌的基因表达谱进行研究。为了确定在HPP处理造成的损伤恢复中起作用的关键基因,我们对两株单核细胞增生李斯特菌菌株(耐压RO15和压力敏感型ScottA)在两种压力水平(200和400兆帕)处理后的九个选定时间点(长达48小时)进行了RNA测序(RNA-seq)。

结果

结果表明,HPP处理后SigB激活了一般应激反应。此外,磷酸转移酶系统(PTS;主要是果糖、甘露糖、半乳糖醇、纤维二糖和抗坏血酸特异性PTS系统)、蛋白质折叠和钴胺素生物合成是HPP损伤恢复过程中上调最多的基因。我们观察到与细胞分裂相关的基因(divIC、dicIVA、ftsE和ftsX)被下调。相比之下,肽聚糖合成基因(murG、murC和pbp2A)被上调。这表明细胞壁修复是HPP损伤恢复的一部分。我们还观察到包括抗CRISPR基因在内的原噬菌体基因被HPP诱导。有趣的是,大量的RNA-seq数据(高达85%)被定位到Rli47,这是一种在HPP后上调的非编码RNA。因此,我们预测Rli47在单核细胞增生李斯特菌的HPP损伤恢复中起作用。此外,基因缺失实验表明,在肽聚糖生物合成基因中,pbp2A突变体对HPP更敏感。

结论

我们确定了几个可能在单核细胞增生李斯特菌HPP损伤恢复中起作用的基因和机制。我们的研究为HPP使病原体失活提供了新信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8c0/7881616/5b9508ce8eee/12864_2021_7407_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验