Suppr超能文献

一种利用颗粒光催化剂实现可扩展太阳能制氢的氢农场策略。

A Hydrogen Farm Strategy for Scalable Solar Hydrogen Production with Particulate Photocatalysts.

作者信息

Zhao Yue, Ding Chunmei, Zhu Jian, Qin Wei, Tao Xiaoping, Fan Fengtao, Li Rengui, Li Can

机构信息

State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China.

University of Chinese Academy of Sciences, Beijing, 100049, China.

出版信息

Angew Chem Int Ed Engl. 2020 Jun 8;59(24):9653-9658. doi: 10.1002/anie.202001438. Epub 2020 Mar 31.

Abstract

Scalable solar hydrogen production by water splitting using particulate photocatalysts is promising for renewable energy utilization. However, photocatalytic overall water splitting is challenging owing to slow water oxidation kinetics, severe reverse reaction, and H /O gas separation. Herein, mimicking nature photosynthesis, a practically feasible approach named Hydrogen Farm Project (HFP) is presented, which is composed of solar energy capturing and hydrogen production subsystems integrated by a shuttle ion loop, Fe /Fe . Well-defined BiVO crystals with precisely tuned {110}/{010} facets are ideal photocatalysts to realize the HFP, giving up to 71 % quantum efficiency for photocatalytic water oxidation and full forward reaction with nearly no reverse reaction. An overall solar-to-chemical efficiency over 1.9 % and a solar-to-hydrogen efficiency exceeding 1.8 % could be achieved. Furthermore, a scalable HFP panel for solar energy storage was demonstrated under sunlight outdoors.

摘要

利用颗粒光催化剂通过水分解进行可扩展的太阳能制氢对于可再生能源的利用具有广阔前景。然而,由于水氧化动力学缓慢、严重的逆反应以及H₂/O₂气体分离,光催化全水分解具有挑战性。在此,模仿自然光合作用,提出了一种名为氢农场项目(HFP)的切实可行的方法,该方法由太阳能捕获和制氢子系统组成,通过穿梭离子回路Fe³⁺/Fe²⁺集成。具有精确调谐的{110}/{010}晶面的明确BiVO₄晶体是实现HFP的理想光催化剂,光催化水氧化的量子效率高达71%,且几乎没有逆反应,实现了完全正向反应。可以实现超过1.9%的总太阳能到化学能效率以及超过1.8%的太阳能到氢能效率。此外,在户外阳光下展示了一种用于太阳能存储的可扩展HFP面板。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验