Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland.
Nat Commun. 2021 Feb 12;12(1):1011. doi: 10.1038/s41467-021-21366-2.
Vertebrate genomes are partitioned into contact domains defined by enhanced internal contact frequency and formed by two principal mechanisms: compartmentalization of transcriptionally active and inactive domains, and stalling of chromosomal loop-extruding cohesin by CTCF bound at domain boundaries. While Drosophila has widespread contact domains and CTCF, it is currently unclear whether CTCF-dependent domains exist in flies. We genetically ablate CTCF in Drosophila and examine impacts on genome folding and transcriptional regulation in the central nervous system. We find that CTCF is required to form a small fraction of all domain boundaries, while critically controlling expression patterns of certain genes and supporting nervous system function. We also find that CTCF recruits the pervasive boundary-associated factor Cp190 to CTCF-occupied boundaries and co-regulates a subset of genes near boundaries together with Cp190. These results highlight a profound difference in CTCF-requirement for genome folding in flies and vertebrates, in which a large fraction of boundaries are CTCF-dependent and suggest that CTCF has played mutable roles in genome architecture and direct gene expression control during metazoan evolution.
脊椎动物基因组被分割成由增强的内部接触频率定义的接触域,并通过两种主要机制形成:转录活性和非活性域的分隔,以及由边界处结合的 CTCF 阻碍染色体环伸出黏连蛋白的停滞。虽然果蝇具有广泛的接触域和 CTCF,但目前尚不清楚果蝇中是否存在依赖 CTCF 的域。我们在果蝇中遗传消融 CTCF,并研究其对中枢神经系统中基因组折叠和转录调控的影响。我们发现 CTCF 是形成所有域边界的一小部分所必需的,同时还严格控制着某些基因的表达模式并支持神经系统功能。我们还发现 CTCF 将普遍存在的边界相关因子 Cp190 募集到 CTCF 占据的边界,并与 Cp190 一起共同调节边界附近的一组基因。这些结果突出了 CTCF 在果蝇和脊椎动物中对基因组折叠的需求存在深刻差异,其中很大一部分边界依赖于 CTCF,并表明 CTCF 在后生动物进化过程中在基因组结构和直接基因表达控制中发挥了可变的作用。