Suppr超能文献

描绘非小细胞肺癌中癌症相关成纤维细胞异质性:系统评价和荟萃分析。

Characterising cancer-associated fibroblast heterogeneity in non-small cell lung cancer: a systematic review and meta-analysis.

机构信息

School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.

Department of Pathology and Data Analytics, University of Leeds, Leeds, UK.

出版信息

Sci Rep. 2021 Feb 12;11(1):3727. doi: 10.1038/s41598-021-81796-2.

Abstract

Cancer-associated fibroblasts (CAFs) are a key component of the tumour microenvironment with evidence suggesting they represent a heterogeneous population. This study summarises the prognostic role of all proteins characterised in CAFs with immunohistochemistry in non-small cell lung cancer thus far. The functions of these proteins in cellular processes crucial to CAFs are also analysed. Five databases were searched to extract survival outcomes from published studies and statistical techniques, including a novel method, used to capture missing values from the literature. A total of 26 proteins were identified, 21 of which were combined into 7 common cellular processes key to CAFs. Quality assessments for sensitivity analyses were carried out for each study using the REMARK criteria whilst publication bias was assessed using funnel plots. Random effects models consistently identified the expression of podoplanin (Overall Survival (OS)/Disease-specific Survival (DSS), univariate analysis HR 2.25, 95% CIs 1.80-2.82) and α-SMA (OS/DSS, univariate analysis HR 2.11, 95% CIs 1.18-3.77) in CAFs as highly prognostic regardless of outcome measure or analysis method. Moreover, proteins involved in maintaining and generating the CAF phenotype (α-SMA, TGF-β and p-Smad2) proved highly significant after sensitivity analysis (HR 2.74, 95% CIs 1.74-4.33) supporting attempts at targeting this pathway for therapeutic benefit.

摘要

癌症相关成纤维细胞(CAFs)是肿瘤微环境的一个关键组成部分,有证据表明它们代表了一个异质群体。本研究总结了迄今为止用免疫组织化学在非小细胞肺癌中对 CAFs 所有特征蛋白的预后作用。还分析了这些蛋白在对 CAFs 至关重要的细胞过程中的功能。通过搜索五个数据库,从已发表的研究中提取生存结果,并使用包括一种从文献中捕获缺失值的新方法在内的统计技术。共鉴定出 26 种蛋白质,其中 21 种蛋白质组合成 7 种与 CAFs 关键的常见细胞过程。使用 REMARK 标准对每项研究进行敏感性分析的质量评估,并使用漏斗图评估发表偏倚。随机效应模型一致确定了 CAFs 中 podoplanin(总体生存(OS)/疾病特异性生存(DSS),单变量分析 HR 2.25,95%CI 1.80-2.82)和 α-SMA(OS/DSS,单变量分析 HR 2.11,95%CI 1.18-3.77)的表达具有高度预后价值,无论结果衡量标准或分析方法如何。此外,参与维持和产生 CAF 表型的蛋白(α-SMA、TGF-β和 p-Smad2)在敏感性分析后具有高度显著意义(HR 2.74,95%CI 1.74-4.33),支持尝试针对该途径进行治疗获益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e439/7881148/8fd29c3d1284/41598_2021_81796_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验