Suppr超能文献

在梯度提升决策树的集成中包含遗传变异并不能提高西酞普兰治疗反应的预测。

Inclusion of genetic variants in an ensemble of gradient boosting decision trees does not improve the prediction of citalopram treatment response.

机构信息

Department of Psychology, Institute for Mental Health Research, University of Texas At Austin, 305 E. 23rd St., E9000, Austin, TX, 78712, USA.

Providence Veterans Affairs Hospital and Brown University School of Medicine, Providence, RI, USA.

出版信息

Sci Rep. 2021 Feb 12;11(1):3780. doi: 10.1038/s41598-021-83338-2.

Abstract

Identifying in advance who is unlikely to respond to a specific antidepressant treatment is crucial to precision medicine efforts. The current work leverages genome-wide genetic variation and machine learning to predict response to the antidepressant citalopram using data from the Sequenced Treatment Alternatives to Relieve Depression (STARD) trial (n = 1257 with both valid genomic and outcome data). A confirmatory approach selected 11 SNPs previously reported to predict response to escitalopram in a sample different from the current study. A novel exploratory approach selected SNPs from across the genome using nested cross-validation with elastic net logistic regression with a predominantly lasso penalty (alpha = 0.99). SNPs from each approach were combined with baseline clinical predictors and treatment response outcomes were predicted using a stacked ensemble of gradient boosting decision trees. Using pre-treatment clinical and symptom predictors only, out-of-fold prediction of a novel treatment response definition based on STARD treatment guidelines was acceptable, AUC = .659, 95% CI [0.629, 0.689]. The inclusion of SNPs using confirmatory or exploratory selection methods did not improve the out-of-fold prediction of treatment response (AUCs were .662, 95% CI [0.632, 0.692] and .655, 95% CI [0.625, 0.685], respectively). A similar pattern of results were observed for the secondary outcomes of the presence or absence of distressing side effects regardless of treatment response and achieving remission or satisfactory partial response, assuming medication tolerance. In the current study, incorporating SNP variation into prognostic models did not enhance the prediction of citalopram response in the STAR*D sample.

摘要

预先确定哪些人不太可能对特定的抗抑郁药物治疗有反应,对于精准医学的努力至关重要。目前的工作利用全基因组遗传变异和机器学习,利用来自序列治疗选择以缓解抑郁(STARD)试验(n = 1257 例,同时具有有效基因组和结果数据)的数据来预测对抗抑郁药西酞普兰的反应。一种验证方法选择了 11 个之前报道的 SNP,这些 SNP 可以预测当前研究中不同样本对依地普仑的反应。一种新颖的探索性方法使用嵌套交叉验证,使用弹性网逻辑回归和主要的套索惩罚(alpha = 0.99),从整个基因组中选择 SNP。来自每种方法的 SNP 与基线临床预测因子相结合,并使用梯度提升决策树的堆叠集成来预测治疗反应结果。仅使用治疗前的临床和症状预测因子,根据 STARD 治疗指南对新的治疗反应定义进行的折叠外预测是可以接受的,AUC =.659,95%CI [0.629, 0.689]。使用确认或探索性选择方法纳入 SNP 并没有改善治疗反应的折叠外预测(AUC 分别为.662,95%CI [0.632, 0.692]和.655,95%CI [0.625, 0.685])。无论治疗反应如何,以及在假设药物耐受性的情况下是否达到缓解或满意的部分缓解,纳入 SNP 变异都不会增强对西酞普兰反应的预测,这一结果对于存在或不存在令人痛苦的副作用的次要结局也是如此。在当前的研究中,将 SNP 变异纳入预后模型并没有增强 STAR*D 样本中西酞普兰反应的预测。

相似文献

2
4
A genome-wide association study of a sustained pattern of antidepressant response.
J Psychiatr Res. 2013 Sep;47(9):1157-65. doi: 10.1016/j.jpsychires.2013.05.002. Epub 2013 May 30.
5
Combining clinical variables to optimize prediction of antidepressant treatment outcomes.
J Psychiatr Res. 2016 Jul;78:94-102. doi: 10.1016/j.jpsychires.2016.03.016. Epub 2016 Apr 1.
7
Genome-wide pharmacogenomic study of citalopram-induced side effects in STAR*D.
Transl Psychiatry. 2012 Jul 3;2(7):e129. doi: 10.1038/tp.2012.57.
8
Optimizing the Prediction of Depression Remission: A Longitudinal Machine Learning Approach.
Am J Med Genet B Neuropsychiatr Genet. 2025 Apr;198(3):e33014. doi: 10.1002/ajmg.b.33014. Epub 2024 Oct 29.
10
Pharmacogenomic study of side-effects for antidepressant treatment options in STAR*D.
Psychol Med. 2012 Jun;42(6):1151-62. doi: 10.1017/S003329171100239X. Epub 2011 Nov 1.

引用本文的文献

1
Complex Emotion Dynamics Contribute to the Prediction of Depression: A Machine Learning and Time Series Feature Extraction Approach.
Affect Sci. 2024 Aug 3;5(3):259-272. doi: 10.1007/s42761-024-00249-x. eCollection 2024 Sep.
2
Predicting stroke and mortality in mitral stenosis with atrial flutter: A machine learning approach.
Ann Noninvasive Electrocardiol. 2023 Sep;28(5):e13078. doi: 10.1111/anec.13078. Epub 2023 Aug 6.
4
Genophenotypic Factors and Pharmacogenomics in Adverse Drug Reactions.
Int J Mol Sci. 2021 Dec 10;22(24):13302. doi: 10.3390/ijms222413302.

本文引用的文献

1
Recommendations for Increasing the Transparency of Analysis of Preexisting Data Sets.
Adv Methods Pract Psychol Sci. 2019 Sep;2(3):214-227. doi: 10.1177/2515245919848684. Epub 2019 Jun 11.
2
Can education be personalised using pupils' genetic data?
Elife. 2020 Mar 10;9:e49962. doi: 10.7554/eLife.49962.
3
Cognitive neuropsychological theory of antidepressant action: a modern-day approach to depression and its treatment.
Psychopharmacology (Berl). 2021 May;238(5):1265-1278. doi: 10.1007/s00213-019-05448-0. Epub 2020 Jan 15.
4
Prospective biomarkers of major depressive disorder: a systematic review and meta-analysis.
Mol Psychiatry. 2020 Feb;25(2):321-338. doi: 10.1038/s41380-019-0585-z. Epub 2019 Nov 19.
6
Predictive modeling of treatment resistant depression using data from STAR*D and an independent clinical study.
PLoS One. 2018 Jun 7;13(6):e0197268. doi: 10.1371/journal.pone.0197268. eCollection 2018.
8
Treatment Selection in Depression.
Annu Rev Clin Psychol. 2018 May 7;14:209-236. doi: 10.1146/annurev-clinpsy-050817-084746. Epub 2018 Mar 1.
9
The potential of predictive analytics to provide clinical decision support in depression treatment planning.
Curr Opin Psychiatry. 2018 Jan;31(1):32-39. doi: 10.1097/YCO.0000000000000377.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验