Weston Sara J, Ritchie Stuart J, Rohrer Julia M, Przybylski Andrew K
Department of Psychology, University of Oregon.
Social, Genetic and Developmental Psychiatry Centre, King's College London.
Adv Methods Pract Psychol Sci. 2019 Sep;2(3):214-227. doi: 10.1177/2515245919848684. Epub 2019 Jun 11.
Secondary data analysis, or the analysis of preexisting data, provides a powerful tool for the resourceful psychological scientist. Never has this been more true than now, when technological advances enable both sharing data across labs and continents and mining large sources of preexisting data. However, secondary data analysis is easily overlooked as a key domain for developing new open-science practices or improving analytic methods for robust data analysis. In this article, we provide researchers with the knowledge necessary to incorporate secondary data analysis into their methodological toolbox. We explain that secondary data analysis can be used for either exploratory or confirmatory work, and can be either correlational or experimental, and we highlight the advantages and disadvantages of this type of research. We describe how transparency-enhancing practices can improve and alter interpretations of results from secondary data analysis and discuss approaches that can be used to improve the robustness of reported results. We close by suggesting ways in which scientific subfields and institutions could address and improve the use of secondary data analysis.
二次数据分析,即对已有数据的分析,为足智多谋的心理科学家提供了一个强大的工具。如今,技术进步使得跨实验室和跨大陆共享数据以及挖掘大量已有数据资源成为可能,这一点比以往任何时候都更加正确。然而,二次数据分析作为开发新的开放科学实践或改进稳健数据分析方法的关键领域,很容易被忽视。在本文中,我们为研究人员提供了将二次数据分析纳入其方法工具箱所需的知识。我们解释说,二次数据分析可用于探索性或验证性工作,既可以是相关性的,也可以是实验性的,并且我们强调了这类研究的优缺点。我们描述了增强透明度的实践如何改进和改变对二次数据分析结果的解释,并讨论了可用于提高所报告结果稳健性的方法。最后,我们提出了科学子领域和机构可以处理和改进二次数据分析使用的方法。