Suppr超能文献

提高现有数据集分析透明度的建议。

Recommendations for Increasing the Transparency of Analysis of Preexisting Data Sets.

作者信息

Weston Sara J, Ritchie Stuart J, Rohrer Julia M, Przybylski Andrew K

机构信息

Department of Psychology, University of Oregon.

Social, Genetic and Developmental Psychiatry Centre, King's College London.

出版信息

Adv Methods Pract Psychol Sci. 2019 Sep;2(3):214-227. doi: 10.1177/2515245919848684. Epub 2019 Jun 11.

Abstract

Secondary data analysis, or the analysis of preexisting data, provides a powerful tool for the resourceful psychological scientist. Never has this been more true than now, when technological advances enable both sharing data across labs and continents and mining large sources of preexisting data. However, secondary data analysis is easily overlooked as a key domain for developing new open-science practices or improving analytic methods for robust data analysis. In this article, we provide researchers with the knowledge necessary to incorporate secondary data analysis into their methodological toolbox. We explain that secondary data analysis can be used for either exploratory or confirmatory work, and can be either correlational or experimental, and we highlight the advantages and disadvantages of this type of research. We describe how transparency-enhancing practices can improve and alter interpretations of results from secondary data analysis and discuss approaches that can be used to improve the robustness of reported results. We close by suggesting ways in which scientific subfields and institutions could address and improve the use of secondary data analysis.

摘要

二次数据分析,即对已有数据的分析,为足智多谋的心理科学家提供了一个强大的工具。如今,技术进步使得跨实验室和跨大陆共享数据以及挖掘大量已有数据资源成为可能,这一点比以往任何时候都更加正确。然而,二次数据分析作为开发新的开放科学实践或改进稳健数据分析方法的关键领域,很容易被忽视。在本文中,我们为研究人员提供了将二次数据分析纳入其方法工具箱所需的知识。我们解释说,二次数据分析可用于探索性或验证性工作,既可以是相关性的,也可以是实验性的,并且我们强调了这类研究的优缺点。我们描述了增强透明度的实践如何改进和改变对二次数据分析结果的解释,并讨论了可用于提高所报告结果稳健性的方法。最后,我们提出了科学子领域和机构可以处理和改进二次数据分析使用的方法。

相似文献

1
Recommendations for Increasing the Transparency of Analysis of Preexisting Data Sets.提高现有数据集分析透明度的建议。
Adv Methods Pract Psychol Sci. 2019 Sep;2(3):214-227. doi: 10.1177/2515245919848684. Epub 2019 Jun 11.
2
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
4
Preregistration of Analyses of Preexisting Data.对已有数据进行分析的预注册。
Psychol Belg. 2019 Aug 22;59(1):338-352. doi: 10.5334/pb.493.

引用本文的文献

本文引用的文献

1
A manifesto for reproducible science.可重复科学宣言。
Nat Hum Behav. 2017 Jan 10;1(1):0021. doi: 10.1038/s41562-016-0021.
2
Redefine statistical significance.重新定义统计学显著性。
Nat Hum Behav. 2018 Jan;2(1):6-10. doi: 10.1038/s41562-017-0189-z.
3
The association between adolescent well-being and digital technology use.青少年福祉与数字技术使用之间的关系。
Nat Hum Behav. 2019 Feb;3(2):173-182. doi: 10.1038/s41562-018-0506-1. Epub 2019 Jan 14.
4
Quasi-Experimental Designs for Causal Inference.用于因果推断的准实验设计。
Educ Psychol. 2016;51(3-4):395-405. doi: 10.1080/00461520.2016.1207177. Epub 2016 Sep 2.
6
Robust research needs many lines of evidence.强有力的研究需要多方面的证据。
Nature. 2018 Jan 25;553(7689):399-401. doi: 10.1038/d41586-018-01023-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验