Department of Electrical & Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA.
Clin Pharmacol Ther. 2019 Oct;106(4):855-865. doi: 10.1002/cpt.1482. Epub 2019 Jun 29.
We set out to determine whether machine learning-based algorithms that included functionally validated pharmacogenomic biomarkers joined with clinical measures could predict selective serotonin reuptake inhibitor (SSRI) remission/response in patients with major depressive disorder (MDD). We studied 1,030 white outpatients with MDD treated with citalopram/escitalopram in the Mayo Clinic Pharmacogenomics Research Network Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS; n = 398), Sequenced Treatment Alternatives to Relieve Depression (STARD; n = 467), and International SSRI Pharmacogenomics Consortium (ISPC; n = 165) trials. A genomewide association study for PGRN-AMPS plasma metabolites associated with SSRI response (serotonin) and baseline MDD severity (kynurenine) identified single nucleotide polymorphisms (SNPs) in DEFB1, ERICH3, AHR, and TSPAN5 that we tested as predictors. Supervised machine-learning methods trained using SNPs and total baseline depression scores predicted remission and response at 8 weeks with area under the receiver operating curve (AUC) > 0.7 (P < 0.04) in PGRN-AMPS patients, with comparable prediction accuracies > 69% (P ≤ 0.07) in STARD and ISPC. These results demonstrate that machine learning can achieve accurate and, importantly, replicable prediction of SSRI therapy response using total baseline depression severity combined with pharmacogenomic biomarkers.
我们着手确定是否可以将基于机器学习的算法(包括经过功能验证的药物基因组生物标志物)与临床指标相结合,从而预测患有重度抑郁症(MDD)的患者对选择性 5-羟色胺再摄取抑制剂(SSRIs)的缓解/反应。我们研究了在梅奥诊所药物基因组学研究网络抗抑郁药药物基因组学研究(PGRN-AMPS;n=398)、序列治疗替代缓解抑郁(STAR*D;n=467)和国际 SSRI 药物基因组学联盟(ISPC;n=165)试验中接受西酞普兰/艾司西酞普兰治疗的 1030 名白人 MDD 门诊患者。PGRN-AMPS 血浆代谢物与 SSRIs 反应(血清素)和基线 MDD 严重程度(犬尿氨酸)相关的全基因组关联研究确定了 DEFB1、ERICH3、AHR 和 TSPAN5 中的单核苷酸多态性(SNP),我们将其作为预测因子进行了测试。使用 SNP 和总基线抑郁评分训练的监督机器学习方法预测了 PGRN-AMPS 患者在 8 周时的缓解和反应,其接受者操作特征曲线(AUC)下面积(AUC)>0.7(P<0.04),在 STAR*D 和 ISPC 中,预测准确率>69%(P≤0.07)。这些结果表明,机器学习可以使用总基线抑郁严重程度结合药物基因组生物标志物实现对 SSRIs 治疗反应的准确且重要的可复制预测。