Ma Lin, Pollard Travis P, Zhang Yong, Schroeder Marshall A, Ding Michael S, Cresce Arthur V, Sun Ruimin, Baker David R, Helms Brett A, Maginn Edward J, Wang Chunsheng, Borodin Oleg, Xu Kang
Battery Science Branch, Energy Science Division, Sensor and Electron Devices Directorate, DEVCOM Army Research Laboratory, Adelphi, MD, 20783, USA.
Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
Angew Chem Int Ed Engl. 2021 May 25;60(22):12438-12445. doi: 10.1002/anie.202017020. Epub 2021 Apr 28.
Aqueous rechargeable zinc metal batteries promise attractive advantages including safety, high volumetric energy density, and low cost; however, such benefits cannot be unlocked unless Zn reversibility meets stringent commercial viability. Herein, we report remarkable improvements on Zn reversibility in aqueous electrolytes when phosphonium-based cations are used to reshape interfacial structures and interphasial chemistries, particularly when their ligands contain an ether linkage. This novel aqueous electrolyte supports unprecedented Zn reversibility by showing dendrite-free Zn plating/stripping for over 6400 h at 0.5 mA cm , or over 280 h at 2.5 mA cm , with coulombic efficiency above 99 % even with 20 % Zn utilization per cycle. Excellent full cell performance is demonstrated with Na V O ⋅1.63 H O cathode, which cycles for 2000 times at 300 mA g . The microscopic characterization and modeling identify the mechanism of unique interphase chemistry from phosphonium and its functionalities as the key factors responsible for dictating reversible Zn chemistry.
水系可充电锌金属电池具有诸多诱人优势,包括安全性高、体积能量密度高和成本低等;然而,除非锌的可逆性满足严格的商业可行性要求,否则这些优势无法得以实现。在此,我们报道了使用基于鏻的阳离子来重塑界面结构和界面化学时,水系电解质中锌的可逆性有了显著改善,特别是当它们的配体含有醚键时。这种新型水系电解质通过在0.5 mA cm下实现无枝晶锌电镀/剥离超过6400小时,或在2.5 mA cm下超过280小时,展现出前所未有的锌可逆性,即使每个循环锌利用率为20%,库仑效率仍高于99%。使用NaV O·1.63H O阴极展示了优异的全电池性能,其在300 mA g下可循环2000次。微观表征和建模确定了来自鏻及其官能团的独特界面化学机制是决定锌可逆化学的关键因素。