Suppr超能文献

基于机器学习的分子组织边界特征的手持式宏观拉曼光谱成像仪。

Handheld macroscopic Raman spectroscopy imaging instrument for machine-learning-based molecular tissue margins characterization.

机构信息

Polytechnique Montreal, Department of Engineering Physics, Montreal, Quebec, Canada.

Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.

出版信息

J Biomed Opt. 2021 Feb;26(2). doi: 10.1117/1.JBO.26.2.022911.

Abstract

SIGNIFICANCE

Raman spectroscopy has been developed for surgical guidance applications interrogating live tissue during tumor resection procedures to detect molecular contrast consistent with cancer pathophysiological changes. To date, the vibrational spectroscopy systems developed for medical applications include single-point measurement probes and intraoperative microscopes. There is a need to develop systems with larger fields of view (FOVs) for rapid intraoperative cancer margin detection during surgery.

AIM

We design a handheld macroscopic Raman imaging system for in vivo tissue margin characterization and test its performance in a model system.

APPROACH

The system is made of a sterilizable line scanner employing a coherent fiber bundle for relaying excitation light from a 785-nm laser to the tissue. A second coherent fiber bundle is used for hyperspectral detection of the fingerprint Raman signal over an area of 1  cm2. Machine learning classifiers were trained and validated on porcine adipose and muscle tissue.

RESULTS

Porcine adipose versus muscle margin detection was validated ex vivo with an accuracy of 99% over the FOV of 95  mm2 in ∼3  min using a support vector machine.

CONCLUSIONS

This system is the first large FOV Raman imaging system designed to be integrated in the workflow of surgical cancer resection. It will be further improved with the aim of discriminating brain cancer in a clinically acceptable timeframe during glioma surgery.

摘要

意义

拉曼光谱技术已经发展成为一种手术指导应用,可在肿瘤切除过程中对活体组织进行检测,以发现与癌症病理生理变化一致的分子对比。迄今为止,为医学应用开发的振动光谱系统包括单点测量探头和术中显微镜。需要开发具有更大视野(FOV)的系统,以便在手术过程中快速检测肿瘤边缘。

目的

我们设计了一种用于活体组织边缘特征描述的手持式宏观拉曼成像系统,并在模型系统中测试了其性能。

方法

该系统由可消毒的线扫描器组成,采用相干光纤束将 785nm 激光的激发光传输到组织。第二个相干光纤束用于在 1cm²的区域内超光谱检测指纹拉曼信号。使用支持向量机,在大约 3 分钟内,对 95mm²的 FOV 进行了猪脂肪和肌肉组织的体外验证,准确率达到 99%。

结论

该系统是第一个设计用于集成在手术癌症切除工作流程中的大 FOV 拉曼成像系统。它将进一步改进,旨在在神经胶质瘤手术中可在临床可接受的时间内区分脑癌。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a427/7880244/1b90dc2636d4/JBO-026-022911-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验