Suppr超能文献

氮磷限制对黑暗中生长的UTEX 263菌株脂质积累的影响。

Effects of Nitrogen and Phosphorus Limitation on Lipid Accumulation by str. UTEX 263 Grown in Darkness.

作者信息

Shrestha Nayan, Dandinpet Kiran K, Schneegurt Mark A

机构信息

Department of Biological Sciences, Wichita State University, Wichita, KS 67260 USA.

出版信息

J Appl Phycol. 2020 Oct;32(5):2795-2805. doi: 10.1007/s10811-020-02144-x. Epub 2020 Jun 8.

Abstract

Growing algae in darkness for biodiesel production eliminates the challenges of evaporation and light penetration reported for open ponds and the costs and fouling that plague photobioreactors. The current study demonstrated that str. UTEX 263 could grow heterotrophically in the dark on pure sugars or lignocellulosic hydrolysates of plant biomass. Hydrolysates of a prairie grass native to Kansas, Big bluestem (), supported the growth of in the dark. Nitrogen limitation stimulated the accumulation of biodiesel lipids by 10-fold in heterotrophic cultures grown on pure sugars or Big bluestem hydrolysate. Limiting P in the growth medium also was shown to increase cellular lipid accumulation in . Iron limitation was not sufficient to increase cellular lipid content. Crude biomass extracts may have levels of N that can't be easily removed, which are high enough to relieve N limitations in growth media. This initial study suggests that P might be more easily removed from biomass extracts than N for increasing cellular lipid production by nutrient limitation and further that native prairie grasses are potentially suitable as sources of lignocellulosic sugars.

摘要

在黑暗中培养藻类用于生物柴油生产,消除了开放式池塘中报道的蒸发和光穿透挑战以及困扰光生物反应器的成本和污染问题。当前研究表明,菌株UTEX 263能够在黑暗中以纯糖或植物生物质的木质纤维素水解产物为原料进行异养生长。堪萨斯州本土的一种草原草——大须芒草()的水解产物,支持了在黑暗中的生长。氮限制使在纯糖或大须芒草水解产物上生长的异养培养物中生物柴油脂质的积累增加了10倍。生长培养基中限制磷也被证明会增加中的细胞脂质积累。铁限制不足以增加细胞脂质含量。粗生物质提取物中可能含有难以轻易去除的氮水平,其含量高到足以缓解生长培养基中的氮限制。这项初步研究表明,通过营养限制增加细胞脂质产量时,磷可能比氮更容易从生物质提取物中去除,并且进一步表明本土草原草有潜力作为木质纤维素糖的来源。

相似文献

1
Effects of Nitrogen and Phosphorus Limitation on Lipid Accumulation by str. UTEX 263 Grown in Darkness.
J Appl Phycol. 2020 Oct;32(5):2795-2805. doi: 10.1007/s10811-020-02144-x. Epub 2020 Jun 8.
2
The microalga Parachlorella kessleri--a novel highly efficient lipid producer.
Biotechnol Bioeng. 2013 Jan;110(1):97-107. doi: 10.1002/bit.24595. Epub 2012 Jul 18.
7
Lipid Production of Heterotrophic Chlorella sp. from Hydrolysate Mixtures of Lipid-Extracted Microalgal Biomass Residues and Molasses.
Appl Biochem Biotechnol. 2015 Oct;177(3):662-74. doi: 10.1007/s12010-015-1770-4. Epub 2015 Aug 4.
8
Lipid accumulation and growth of Chlorella zofingiensis in flat plate photobioreactors outdoors.
Bioresour Technol. 2011 Nov;102(22):10577-84. doi: 10.1016/j.biortech.2011.08.109. Epub 2011 Sep 5.
10
The boosted lipid accumulation in microalga Chlorella vulgaris by a heterotrophy and nutrition-limitation transition cultivation regime.
World J Microbiol Biotechnol. 2016 Dec;32(12):202. doi: 10.1007/s11274-016-2164-7. Epub 2016 Oct 31.

引用本文的文献

1
A comprehensive review on oleaginous bacteria: an alternative source for biodiesel production.
Bioresour Bioprocess. 2022 Apr 22;9(1):47. doi: 10.1186/s40643-022-00527-1.
3
Microalgae biofuels: illuminating the path to a sustainable future amidst challenges and opportunities.
Biotechnol Biofuels Bioprod. 2024 Jan 23;17(1):10. doi: 10.1186/s13068-024-02461-0.
4
Biotechnological Approaches for Biomass and Lipid Production Using Microalgae and Its Future Perspectives.
J Microbiol Biotechnol. 2022 Nov 28;32(11):1357-1372. doi: 10.4014/jmb.2209.09012. Epub 2022 Oct 21.

本文引用的文献

1
Mechanisms of Phosphorus Acquisition and Lipid Class Remodeling under P Limitation in a Marine Microalga.
Plant Physiol. 2017 Dec;175(4):1543-1559. doi: 10.1104/pp.17.00621. Epub 2017 Oct 19.
4
Phosphate limitation promotes unsaturated fatty acids and arachidonic acid biosynthesis by microalgae Porphyridium purpureum.
Bioprocess Biosyst Eng. 2016 Jul;39(7):1129-36. doi: 10.1007/s00449-016-1589-6. Epub 2016 Mar 23.
5
Microalgae respond differently to nitrogen availability during culturing.
J Biosci. 2015 Jun;40(2):365-74. doi: 10.1007/s12038-015-9510-z.
7
Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris.
Appl Microbiol Biotechnol. 2012 Apr;94(2):549-61. doi: 10.1007/s00253-012-3915-5. Epub 2012 Feb 25.
8
The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana.
Appl Microbiol Biotechnol. 2011 Aug;91(3):835-44. doi: 10.1007/s00253-011-3399-8. Epub 2011 Jun 23.
9
The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp.
Appl Microbiol Biotechnol. 2011 May;90(4):1429-41. doi: 10.1007/s00253-011-3170-1. Epub 2011 Mar 23.
10
Heterotrophic growth and lipid production of Chlorella protothecoides on glycerol.
Bioprocess Biosyst Eng. 2011 Jan;34(1):121-5. doi: 10.1007/s00449-010-0474-y. Epub 2010 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验