Suppr超能文献

基于模型的深度学习的多激发灵敏度编码扩散磁共振成像(MODL-MUSSELS)。

MULTI-SHOT SENSITIVITY-ENCODED DIFFUSION MRI USING MODEL-BASED DEEP LEARNING (MODL-MUSSELS).

作者信息

Aggarwal Hemant K, Mani Merry P, Jacob Mathews

机构信息

University of Iowa, Iowa, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:1541-1544. doi: 10.1109/isbi.2019.8759514. Epub 2019 Jul 11.

Abstract

We propose a model-based deep learning architecture for the correction of phase errors in multishot diffusion-weighted echo-planar MRI images. This work is a generalization of MUSSELS, which is a structured low-rank algorithm. We show that an iterative reweighted least-squares implementation of MUSSELS resembles the model-based deep learning (MoDL) framework. We propose to replace the self-learned linear filter bank in MUSSELS with a convolutional neural network, whose parameters are learned from exemplary data. The proposed algorithm reduces the computational complexity of MUSSELS by several orders of magnitude, while providing comparable image quality.

摘要

我们提出了一种基于模型的深度学习架构,用于校正多激发扩散加权回波平面磁共振成像(MRI)图像中的相位误差。这项工作是对MUSSELS的推广,MUSSELS是一种结构化低秩算法。我们表明,MUSSELS的迭代加权最小二乘实现类似于基于模型的深度学习(MoDL)框架。我们建议用卷积神经网络取代MUSSELS中的自学习线性滤波器组,其参数从示例数据中学习。所提出的算法将MUSSELS的计算复杂度降低了几个数量级,同时提供了相当的图像质量。

相似文献

1
MULTI-SHOT SENSITIVITY-ENCODED DIFFUSION MRI USING MODEL-BASED DEEP LEARNING (MODL-MUSSELS).
Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:1541-1544. doi: 10.1109/isbi.2019.8759514. Epub 2019 Jul 11.
2
MoDL-MUSSELS: Model-Based Deep Learning for Multishot Sensitivity-Encoded Diffusion MRI.
IEEE Trans Med Imaging. 2020 Apr;39(4):1268-1277. doi: 10.1109/TMI.2019.2946501. Epub 2019 Oct 9.
3
Deep learning based multiplexed sensitivity-encoding (DL-MUSE) for high-resolution multi-shot DWI.
Neuroimage. 2021 Dec 1;244:118632. doi: 10.1016/j.neuroimage.2021.118632. Epub 2021 Oct 7.
4
Improved MUSSELS reconstruction for high-resolution multi-shot diffusion weighted imaging.
Magn Reson Med. 2020 Jun;83(6):2253-2263. doi: 10.1002/mrm.28090. Epub 2019 Dec 2.
6
SpiNet: A deep neural network for Schatten p-norm regularized medical image reconstruction.
Med Phys. 2021 May;48(5):2214-2229. doi: 10.1002/mp.14744. Epub 2021 Mar 22.
7
Water/fat separation for self-navigated diffusion-weighted multishot echo-planar imaging.
NMR Biomed. 2023 Jan;36(1):e4822. doi: 10.1002/nbm.4822. Epub 2022 Sep 13.
8
Multishot cartesian turbo spin-echo diffusion imaging using iterative POCSMUSE Reconstruction.
J Magn Reson Imaging. 2017 Jul;46(1):167-174. doi: 10.1002/jmri.25522. Epub 2016 Oct 20.
9
CALIBRATIONLESS PARALLEL MRI USING MODEL BASED DEEP LEARNING (C-MODL).
Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:1428-1431. doi: 10.1109/isbi45749.2020.9098490. Epub 2020 May 22.
10
Wave-Encoded Model-Based Deep Learning for Highly Accelerated Imaging with Joint Reconstruction.
Bioengineering (Basel). 2022 Nov 29;9(12):736. doi: 10.3390/bioengineering9120736.

引用本文的文献

2
Blip-up blip-down circular EPI (BUDA-cEPI) for distortion-free dMRI with rapid unrolled deep learning reconstruction.
Magn Reson Imaging. 2025 Jan;115:110277. doi: 10.1016/j.mri.2024.110277. Epub 2024 Nov 19.
3
Deep-Learning Methods for Parallel Magnetic Resonance Imaging Reconstruction: A Survey of the Current Approaches, Trends, and Issues.
IEEE Signal Process Mag. 2020 Jan;37(1):128-140. doi: 10.1109/MSP.2019.2950640. Epub 2020 Jan 20.
4
Wasserstein GANs for MR Imaging: From Paired to Unpaired Training.
IEEE Trans Med Imaging. 2021 Jan;40(1):105-115. doi: 10.1109/TMI.2020.3022968. Epub 2020 Dec 29.
5
Highly accelerated multishot echo planar imaging through synergistic machine learning and joint reconstruction.
Magn Reson Med. 2019 Oct;82(4):1343-1358. doi: 10.1002/mrm.27813. Epub 2019 May 20.

本文引用的文献

1
k-Space deep learning for reference-free EPI ghost correction.
Magn Reson Med. 2019 Dec;82(6):2299-2313. doi: 10.1002/mrm.27896. Epub 2019 Jul 18.
2
Convex recovery of continuous domain piecewise constant images from nonuniform Fourier samples.
IEEE Trans Signal Process. 2018 Jan;66(1):236-250. doi: 10.1109/TSP.2017.2750111. Epub 2017 Sep 7.
3
MoDL: Model-Based Deep Learning Architecture for Inverse Problems.
IEEE Trans Med Imaging. 2019 Feb;38(2):394-405. doi: 10.1109/TMI.2018.2865356. Epub 2018 Aug 13.
4
Learned Primal-Dual Reconstruction.
IEEE Trans Med Imaging. 2018 Jun;37(6):1322-1332. doi: 10.1109/TMI.2018.2799231.
5
Multi-shot sensitivity-encoded diffusion data recovery using structured low-rank matrix completion (MUSSELS).
Magn Reson Med. 2017 Aug;78(2):494-507. doi: 10.1002/mrm.26382. Epub 2016 Aug 23.
6
A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE).
Neuroimage. 2013 May 15;72:41-7. doi: 10.1016/j.neuroimage.2013.01.038. Epub 2013 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验