Suppr超能文献

从非均匀傅里叶样本中对连续域分段常数图像进行凸恢复。

Convex recovery of continuous domain piecewise constant images from nonuniform Fourier samples.

作者信息

Ongie Greg, Biswas Sampurna, Jacob Mathews

机构信息

Department of EECS, University of Michigan, Ann Arbor, MI 48108 USA.

Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, 52245 USA.

出版信息

IEEE Trans Signal Process. 2018 Jan;66(1):236-250. doi: 10.1109/TSP.2017.2750111. Epub 2017 Sep 7.

Abstract

We consider the recovery of a continuous domain piecewise constant image from its non-uniform Fourier samples using a convex matrix completion algorithm. We assume the discontinuities/edges of the image are localized to the zero level-set of a bandlimited function. This assumption induces linear dependencies between the Fourier coefficients of the image, which results in a two-fold block Toeplitz matrix constructed from the Fourier coefficients being low-rank. The proposed algorithm reformulates the recovery of the unknown Fourier coefficients as a structured low-rank matrix completion problem, where the nuclear norm of the matrix is minimized subject to structure and data constraints. We show that exact recovery is possible with high probability when the edge set of the image satisfies an incoherency property. We also show that the incoherency property is dependent on the geometry of the edge set curve, implying higher sampling burden for smaller curves. This paper generalizes recent work on the super-resolution recovery of isolated Diracs or signals with finite rate of innovation to the recovery of piecewise constant images.

摘要

我们考虑使用凸矩阵完备算法从非均匀傅里叶样本中恢复连续域分段常数图像。我们假设图像的不连续性/边缘位于一个带限函数的零水平集上。这一假设在图像的傅里叶系数之间引入了线性相关性,从而导致由傅里叶系数构成的两倍块Toeplitz矩阵是低秩的。所提出的算法将未知傅里叶系数的恢复重新表述为一个结构化低秩矩阵完备问题,其中在结构和数据约束下使矩阵的核范数最小化。我们表明,当图像的边缘集满足不相干性质时,以高概率实现精确恢复是可能的。我们还表明,不相干性质取决于边缘集曲线的几何形状,这意味着对于较小的曲线采样负担更大。本文将最近关于孤立狄拉克函数或具有有限创新率信号的超分辨率恢复的工作推广到分段常数图像的恢复。

相似文献

5
ADAPTIVE STRUCTURED LOW RANK ALGORITHM FOR MR IMAGE RECOVERY.用于磁共振图像恢复的自适应结构化低秩算法
Proc IEEE Int Symp Biomed Imaging. 2018 Apr;2018:1260-1263. doi: 10.1109/isbi.2018.8363800. Epub 2018 May 24.
7
A Fast Algorithm for Convolutional Structured Low-rank Matrix Recovery.一种用于卷积结构化低秩矩阵恢复的快速算法。
IEEE Trans Comput Imaging. 2017 Dec;3(4):535-550. doi: 10.1109/TCI.2017.2721819. Epub 2017 Jan 30.
8
ACCELERATED DYNAMIC MRI USING STRUCTURED LOW RANK MATRIX COMPLETION.基于结构化低秩矩阵补全的加速动态磁共振成像
Proc Int Conf Image Proc. 2016 Sep;2016:1858-1862. doi: 10.1109/icip.2016.7532680. Epub 2016 Aug 19.

引用本文的文献

2
Research on Several Key Problems of Medical Image Segmentation and Virtual Surgery.医学图像分割与虚拟手术若干关键问题研究
Contrast Media Mol Imaging. 2022 Apr 11;2022:3463358. doi: 10.1155/2022/3463358. eCollection 2022.
6
RECOVERY OF NOISY POINTS ON BANDLIMITED SURFACES: KERNEL METHODS RE-EXPLAINED.带限曲面上噪声点的恢复:核方法再解释
Proc IEEE Int Conf Acoust Speech Signal Process. 2018 Apr;2018:4024-4028. doi: 10.1109/icassp.2018.8462186. Epub 2018 Sep 13.
7
Deep Generalization of Structured Low-Rank Algorithms (Deep-SLR).深度结构化低秩算法的广泛应用(Deep-SLR)。
IEEE Trans Med Imaging. 2020 Dec;39(12):4186-4197. doi: 10.1109/TMI.2020.3014581. Epub 2020 Nov 30.
8
Image Reconstruction: From Sparsity to Data-adaptive Methods and Machine Learning.图像重建:从稀疏性到数据自适应方法与机器学习
Proc IEEE Inst Electr Electron Eng. 2020 Jan;108(1):86-109. doi: 10.1109/JPROC.2019.2936204. Epub 2019 Sep 19.

本文引用的文献

3
ACCELERATED DYNAMIC MRI USING STRUCTURED LOW RANK MATRIX COMPLETION.基于结构化低秩矩阵补全的加速动态磁共振成像
Proc Int Conf Image Proc. 2016 Sep;2016:1858-1862. doi: 10.1109/icip.2016.7532680. Epub 2016 Aug 19.
7
Stable and Robust Sampling Strategies for Compressive Imaging.用于压缩成像的稳定且鲁棒的采样策略。
IEEE Trans Image Process. 2014 Feb;23(2):612-22. doi: 10.1109/TIP.2013.2288004. Epub 2013 Nov 1.
8
Near-optimal compressed sensing guarantees for total variation minimization.总变差最小化的近最优压缩感知保证。
IEEE Trans Image Process. 2013 Oct;22(10):3941-9. doi: 10.1109/TIP.2013.2264681. Epub 2013 May 22.
10
The curvelet transform for image denoising.用于图像去噪的曲波变换。
IEEE Trans Image Process. 2002;11(6):670-84. doi: 10.1109/TIP.2002.1014998.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验