Centre de Biochimie Structurale, CNRS UMR 5048, INSERM U1054, F-34000 Montpellier, France.
Université de Montpellier, F-34000 Montpellier, France.
ACS Nano. 2021 Mar 23;15(3):4186-4196. doi: 10.1021/acsnano.0c05113. Epub 2021 Feb 15.
Technological breakthroughs in electron microscopy (EM) have made it possible to solve structures of biological macromolecular complexes and to raise novel challenges, specifically related to sample preparation and heterogeneous macromolecular assemblies such as DNA-protein, protein-protein, and membrane protein assemblies. Here, we built a V-shaped DNA origami as a scaffolding molecular system to template proteins at user-defined positions in space. This template positions macromolecular assemblies of various sizes, juxtaposes combinations of biomolecules into complex arrangements, isolates biomolecules in their active state, and stabilizes membrane proteins in solution. In addition, the design can be engineered to tune DNA mechanical properties by exerting a controlled piconewton (pN) force on the molecular system and thus adapted to characterize mechanosensitive proteins. The binding site can also be specifically customized to accommodate the protein of interest, either interacting spontaneously with DNA or through directed chemical conjugation, increasing the range of potential targets for single-particle EM investigation. We assessed the applicability for five different proteins. Finally, as a proof of principle, we used RNAP protein to validate the approach and to explore the compatibility of the template with cryo-EM sample preparation.
电子显微镜(EM)技术的突破使得解决生物大分子复合物的结构成为可能,并提出了新的挑战,特别是与样品制备和异质大分子组装有关,如 DNA-蛋白质、蛋白质-蛋白质和膜蛋白组装。在这里,我们构建了一个 V 形 DNA 折纸作为支架分子系统,在空间中为用户定义的位置定位蛋白质。该模板定位了各种大小的大分子组装体,将生物分子组合并置成复杂的排列,将生物分子稳定在其活性状态,并将膜蛋白稳定在溶液中。此外,通过对分子系统施加可控的皮牛顿(pN)力,该设计可以调节 DNA 的机械性能,从而适应对机械敏感蛋白的特性进行研究。结合位点也可以通过特异性定制来容纳感兴趣的蛋白质,要么与 DNA 自发相互作用,要么通过定向化学偶联,从而增加了单颗粒 EM 研究的潜在目标范围。我们评估了五种不同蛋白质的适用性。最后,作为原理验证,我们使用 RNAP 蛋白来验证该方法,并探索模板与冷冻电镜样品制备的兼容性。