Heymans Sophie V, Carlier Bram, Toumia Yosra, Nooijens Sjoerd, Ingram Marcus, Giammanco Andrea, d'Agostino Emiliano, Crijns Wouter, Bertrand Alexander, Paradossi Gaio, Himmelreich Uwe, D'hooge Jan, Sterpin Edmond, Van Den Abeele Koen
Department of Physics, KU Leuven Campus Kulak, Kortrijk, Belgium.
Department of Oncology, KU Leuven, Leuven, Belgium.
Med Phys. 2021 Apr;48(4):1983-1995. doi: 10.1002/mp.14778. Epub 2021 Mar 11.
PURPOSE: Despite the physical benefits of protons over conventional photon radiation in cancer treatment, range uncertainties impede the ability to harness the full potential of proton therapy. While monitoring the proton range in vivo could reduce the currently adopted safety margins, a routinely applicable range verification technique is still lacking. Recently, phase-change nanodroplets were proposed for proton range verification, demonstrating a reproducible relationship between the proton range and generated ultrasound contrast after radiation-induced vaporization at 25°C. In this study, previous findings are extended with proton irradiations at different temperatures, including the physiological temperature of 37°C, for a novel nanodroplet formulation. Moreover, the potential to modulate the linear energy transfer (LET) threshold for vaporization by varying the degree of superheat is investigated, where the aim is to demonstrate vaporization of nanodroplets directly by primary protons. METHODS: Perfluorobutane nanodroplets with a shell made of polyvinyl alcohol (PVA-PFB) or 10,12-pentacosadyinoic acid (PCDA-PFB) were dispersed in polyacrylamide hydrogels and irradiated with 62 MeV passively scattered protons at temperatures of 37°C and 50°C. Nanodroplet transition into echogenic microbubbles was assessed using ultrasound imaging (gray value and attenuation analysis) and optical images. The proton range was measured independently and compared to the generated contrast. RESULTS: Nanodroplet design proved crucial to ensure thermal stability, as PVA-shelled nanodroplets dramatically outperformed their PCDA-shelled counterpart. At body temperature, a uniform radiation response proximal to the Bragg peak is attributed to nuclear reaction products interacting with PVA-PFB nanodroplets, with the 50% drop in ultrasound contrast being 0.17 mm ± 0.20 mm (mean ± standard deviation) in front of the proton range. Also at 50°C, highly reproducible ultrasound contrast profiles were obtained with shifts of -0.74 mm ± 0.09 mm (gray value analysis), -0.86 mm ± 0.04 mm (attenuation analysis) and -0.64 mm ± 0.29 mm (optical analysis). Moreover, a strong contrast enhancement was observed near the Bragg peak, suggesting that nanodroplets were sensitive to primary protons. CONCLUSIONS: By varying the degree of superheat of the nanodroplets' core, one can modulate the intensity of the generated ultrasound contrast. Moreover, a submillimeter reproducible relationship between the ultrasound contrast and the proton range was obtained, either indirectly via the visualization of secondary reaction products or directly through the detection of primary protons, depending on the degree of superheat. The potential of PVA-PFB nanodroplets for in vivo proton range verification was confirmed by observing a reproducible radiation response at physiological temperature, and further studies aim to assess the nanodroplets' performance in a physiological environment. Ultimately, cost-effective online or offline ultrasound imaging of radiation-induced nanodroplet vaporization could facilitate the reduction of safety margins in treatment planning and enable adaptive proton therapy.
目的:尽管在癌症治疗中质子相对于传统光子辐射具有物理优势,但射程不确定性阻碍了充分发挥质子治疗的全部潜力。虽然监测体内质子射程可以减少当前采用的安全裕度,但仍缺乏常规适用的射程验证技术。最近,有人提出将相变纳米液滴用于质子射程验证,证明了在25°C辐射诱导汽化后质子射程与产生的超声造影之间存在可重复的关系。在本研究中,通过在不同温度(包括37°C的生理温度)下进行质子辐照,对一种新型纳米液滴制剂扩展了先前的研究结果。此外,研究了通过改变过热度来调节汽化线性能量转移(LET)阈值的潜力,目的是证明初级质子可直接使纳米液滴汽化。 方法:将由聚乙烯醇(PVA-PFB)或10,12-二十五碳二炔酸(PCDA-PFB)制成壳的全氟丁烷纳米液滴分散在聚丙烯酰胺水凝胶中,并在37°C和50°C的温度下用62 MeV被动散射质子进行辐照。使用超声成像(灰度值和衰减分析)和光学图像评估纳米液滴向回声微泡的转变。独立测量质子射程并与产生的造影进行比较。 结果:纳米液滴设计被证明对确保热稳定性至关重要,因为PVA壳纳米液滴的性能明显优于PCDA壳纳米液滴。在体温下,靠近布拉格峰的均匀辐射响应归因于核反应产物与PVA-PFB纳米液滴的相互作用,超声造影下降50%的位置在质子射程前方0.17 mm±0.20 mm(平均值±标准差)处。同样在50°C时,通过灰度值分析得到的位移为-0.74 mm±0.09 mm、衰减分析为-0.86 mm±0.04 mm、光学分析为-0.64 mm±0.29 mm,获得了高度可重复的超声造影曲线。此外,在布拉格峰附近观察到强烈的造影增强,表明纳米液滴对初级质子敏感。 结论:通过改变纳米液滴核心的过热度,可以调节产生的超声造影强度。此外,根据过热度的不同,通过观察次级反应产物的可视化间接获得或直接通过检测初级质子获得了超声造影与质子射程之间亚毫米级的可重复关系。通过在生理温度下观察到可重复的辐射响应,证实了PVA-PFB纳米液滴用于体内质子射程验证的潜力,进一步的研究旨在评估纳米液滴在生理环境中的性能。最终,对辐射诱导纳米液滴汽化进行经济高效的在线或离线超声成像可以有助于减少治疗计划中的安全裕度并实现自适应质子治疗。
Phys Med Biol. 2024-10-10
IEEE Trans Ultrason Ferroelectr Freq Control. 2022-6
Pharmaceuticals (Basel). 2024-5-14
IEEE Trans Ultrason Ferroelectr Freq Control. 2021-12
Nanomaterials (Basel). 2024-10-13
Pharmaceuticals (Basel). 2024-5-14