Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
Department of Oncology, KU Leuven, Leuven, Belgium.
Phys Med Biol. 2024 Oct 10;69(20). doi: 10.1088/1361-6560/ad7e76.
In proton therapy, range uncertainties prevent optimal benefit from the superior depth-dose characteristics of proton beams over conventional photon-based radiotherapy. To reduce these uncertainties we recently proposed the use of phase-change ultrasound contrast agents as an affordable and effective range verification tool. In particular, superheated nanodroplets can convert into echogenic microbubbles upon proton irradiation, whereby the resulting ultrasound contrast relates to the proton range with high reproducibility. Here, we provide a firstproof-of-concept of this technology.First, thebiocompatibility of radiation-sensitive poly(vinyl alcohol) perfluorobutane nanodroplets was investigated using several colorimetric assays. Then,ultrasound contrast was characterized using acoustic droplet vaporization (ADV) and later using proton beam irradiations at varying energies (49.7 MeV and 62 MeV) in healthy Sprague Dawley rats. A preliminary evaluation of thebiocompatibility was performed using ADV and a combination of physiology monitoring and histology.Nanodroplets were non-toxic over a wide concentration range (<1 mM). In healthy rats, intravenously injected nanodroplets primarily accumulated in the organs of the reticuloendothelial system, where the lifetime of the generated ultrasound contrast (<30 min) was compatible with a typical radiotherapy fraction (<5 min). Spontaneous droplet vaporization did not result in significant background signals. Online ultrasound imaging of the liver of droplet-injected rats demonstrated an energy-dependent proton response, which can be tuned by varying the nanodroplet concentration. However, caution is warranted when deciding on the exact nanodroplet dose regimen as a mild physiological response (drop in cardiac rate, granuloma formation) was observed after ADV.These findings underline the potential of phase-change ultrasound contrast agents forproton range verification and provide the next step towards eventual clinical applications.
在质子治疗中,由于射程不确定性,质子射线优越的深度剂量特性无法得到最佳利用,而优于传统光子放疗。为了降低这些不确定性,我们最近提出使用相变超声对比剂作为一种经济有效的射程验证工具。特别是,过热纳米液滴在质子辐照下可以转化为声致回声微泡,由此产生的超声对比剂与质子射程具有高度重现性。在这里,我们首次提供了这项技术的概念验证。首先,使用几种比色测定法研究了辐射敏感的聚(聚乙烯醇)全氟丁烷纳米液滴的生物相容性。然后,使用声空化(ADV)和随后在健康 Sprague Dawley 大鼠中使用不同能量(49.7 MeV 和 62 MeV)的质子束照射来表征超声对比。使用 ADV 以及生理学监测和组织学的组合,对生物相容性进行了初步评估。纳米液滴在很宽的浓度范围内(<1 mM)都是无毒的。在健康大鼠中,静脉注射的纳米液滴主要积聚在网状内皮系统的器官中,在此处生成的超声对比的寿命(<30 分钟)与典型的放射治疗分次(<5 分钟)兼容。自发的液滴蒸发不会导致明显的背景信号。对注射了液滴的大鼠肝脏进行在线超声成像显示出与能量相关的质子响应,通过改变纳米液滴浓度可以对其进行调整。然而,在决定确切的纳米液滴剂量方案时需要谨慎,因为在 ADV 后观察到轻微的生理反应(心率下降、肉芽肿形成)。这些发现强调了相变超声对比剂在质子射程验证中的潜力,并为最终的临床应用提供了下一步的研究方向。