Suppr超能文献

声学调制可在体温下实现纳米液滴质子检测。

Acoustic Modulation Enables Proton Detection With Nanodroplets at Body Temperature.

作者信息

Heymans Sophie V, Collado-Lara Gonzalo, Rovituso Marta, Vos Hendrik J, D'hooge Jan, de Jong Nico, Van Abeele Koen Den

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Jun;69(6):2028-2038. doi: 10.1109/TUFFC.2022.3164805. Epub 2022 May 26.

Abstract

Superheated nanodroplet (ND) vaporization by proton radiation was recently demonstrated, opening the door to ultrasound-based in vivo proton range verification. However, at body temperature and physiological pressures, perfluorobutane nanodroplets (PFB-NDs), which offer a good compromise between stability and radiation sensitivity, are not directly sensitive to primary protons. Instead, they are vaporized by infrequent secondary particles, which limits the precision for range verification. The radiation-induced vaporization threshold (i.e., sensitization threshold) can be reduced by lowering the pressure in the droplet such that ND vaporization by primary protons can occur. Here, we propose to use an acoustic field to modulate the pressure, intermittently lowering the proton sensitization threshold of PFB-NDs during the rarefactional phase of the ultrasound wave. Simultaneous proton irradiation and sonication with a 1.1 MHz focused transducer, using increasing peak negative pressures (PNPs), were applied on a dilution of PFB-NDs flowing in a tube, while vaporization was acoustically monitored with a linear array. Sensitization to primary protons was achieved at temperatures between [Formula: see text] and 40 °C using acoustic PNPs of relatively low amplitude (from 800 to 200 kPa, respectively), while sonication alone did not lead to ND vaporization at those PNPs. Sensitization was also measured at the clinically relevant body temperature (i.e., 37 °C) using a PNP of 400 kPa. These findings confirm that acoustic modulation lowers the sensitization threshold of superheated NDs, enabling a direct proton response at body temperature.

摘要

最近已证实质子辐射可使过热纳米液滴(ND)汽化,这为基于超声的体内质子射程验证打开了大门。然而,在体温和生理压力下,全氟丁烷纳米液滴(PFB-ND)虽然在稳定性和辐射敏感性之间取得了良好平衡,但对初级质子并不直接敏感。相反,它们是由不常见的次级粒子汽化的,这限制了射程验证的精度。通过降低液滴内的压力,可降低辐射诱导的汽化阈值(即敏化阈值),从而使初级质子能够使ND汽化。在此,我们建议使用声场来调节压力,在超声波的稀疏阶段间歇性地降低PFB-ND的质子敏化阈值。使用1.1 MHz聚焦换能器,在不断增加峰值负压(PNP)的情况下,对在管中流动的PFB-ND稀释液同时进行质子辐照和超声处理,同时用线性阵列对汽化进行声学监测。在[公式:见原文]至40℃的温度范围内,使用相对较低幅度的声学PNP(分别为800至200 kPa)实现了对初级质子的敏化,而在这些PNP下单独超声处理不会导致ND汽化。还使用400 kPa的PNP在临床相关体温(即37℃)下测量了敏化情况。这些发现证实,声学调制降低了过热ND的敏化阈值,使得在体温下能够产生直接的质子响应。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验